How to Make Your Own Cryptocurrency Trading Bot: Bitcoin ...

05-25 19:12 - 'WANTED: Python programmers with experience in algorithmic trading to join our cryptocurrency project' (self.Bitcoin) by /u/CryptoAi removed from /r/Bitcoin within 1612-1622min

'''
CryptoAi is looking for additional members to join its growing team. Our organization is centered around capturing value from the growing cryptocurrency sector. To do this, we’re operating a proprietary, in house hedge fund, as well releasing SaaS apps for traders.
We’re looking for people with experience in:
For more information, please email us at: [email protected]
(If don’t meet the above desired requirements but feel like you have something else to contribute to the company feel free to contact us)
[link]1
'''
WANTED: Python programmers with experience in algorithmic trading to join our cryptocurrency project
Go1dfish undelete link
unreddit undelete link
Author: CryptoAi
1: www.cryptoai.io
submitted by removalbot to removalbot [link] [comments]

WANTED: Python programmers with experience in algorithmic trading to join our cryptocurrency project /r/Bitcoin

WANTED: Python programmers with experience in algorithmic trading to join our cryptocurrency project /Bitcoin submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Scaling Reddit Community Points with Arbitrum Rollup: a piece of cake

Scaling Reddit Community Points with Arbitrum Rollup: a piece of cake
https://preview.redd.it/b80c05tnb9e51.jpg?width=2550&format=pjpg&auto=webp&s=850282c1a3962466ed44f73886dae1c8872d0f31
Submitted for consideration to The Great Reddit Scaling Bake-Off
Baked by the pastry chefs at Offchain Labs
Please send questions or comments to [[email protected] ](mailto:[email protected])
1. Overview
We're excited to submit Arbitrum Rollup for consideration to The Great Reddit Scaling Bake-Off. Arbitrum Rollup is the only Ethereum scaling solution that supports arbitrary smart contracts without compromising on Ethereum's security or adding points of centralization. For Reddit, this means that Arbitrum can not only scale the minting and transfer of Community Points, but it can foster a creative ecosystem built around Reddit Community Points enabling points to be used in a wide variety of third party applications. That's right -- you can have your cake and eat it too!
Arbitrum Rollup isn't just Ethereum-style. Its Layer 2 transactions are byte-for-byte identical to Ethereum, which means Ethereum users can continue to use their existing addresses and wallets, and Ethereum developers can continue to use their favorite toolchains and development environments out-of-the-box with Arbitrum. Coupling Arbitrum’s tooling-compatibility with its trustless asset interoperability, Reddit not only can scale but can onboard the entire Ethereum community at no cost by giving them the same experience they already know and love (well, certainly know).
To benchmark how Arbitrum can scale Reddit Community Points, we launched the Reddit contracts on an Arbitrum Rollup chain. Since Arbitrum provides full Solidity support, we didn't have to rewrite the Reddit contracts or try to mimic their functionality using an unfamiliar paradigm. Nope, none of that. We launched the Reddit contracts unmodified on Arbitrum Rollup complete with support for minting and distributing points. Like every Arbitrum Rollup chain, the chain included a bridge interface in which users can transfer Community Points or any other asset between the L1 and L2 chains. Arbitrum Rollup chains also support dynamic contract loading, which would allow third-party developers to launch custom ecosystem apps that integrate with Community Points on the very same chain that runs the Reddit contracts.
1.1 Why Ethereum
Perhaps the most exciting benefit of distributing Community Points using a blockchain is the ability to seamlessly port points to other applications and use them in a wide variety of contexts. Applications may include simple transfers such as a restaurant that allows Redditors to spend points on drinks. Or it may include complex smart contracts -- such as placing Community Points as a wager for a multiparty game or as collateral in a financial contract.
The common denominator between all of the fun uses of Reddit points is that it needs a thriving ecosystem of both users and developers, and the Ethereum blockchain is perhaps the only smart contract platform with significant adoption today. While many Layer 1 blockchains boast lower cost or higher throughput than the Ethereum blockchain, more often than not, these attributes mask the reality of little usage, weaker security, or both.
Perhaps another platform with significant usage will rise in the future. But today, Ethereum captures the mindshare of the blockchain community, and for Community Points to provide the most utility, the Ethereum blockchain is the natural choice.
1.2 Why Arbitrum
While Ethereum's ecosystem is unmatched, the reality is that fees are high and capacity is too low to support the scale of Reddit Community Points. Enter Arbitrum. Arbitrum Rollup provides all of the ecosystem benefits of Ethereum, but with orders of magnitude more capacity and at a fraction of the cost of native Ethereum smart contracts. And most of all, we don't change the experience from users. They continue to use the same wallets, addresses, languages, and tools.
Arbitrum Rollup is not the only solution that can scale payments, but it is the only developed solution that can scale both payments and arbitrary smart contracts trustlessly, which means that third party users can build highly scalable add-on apps that can be used without withdrawing money from the Rollup chain. If you believe that Reddit users will want to use their Community Points in smart contracts--and we believe they will--then it makes the most sense to choose a single scaling solution that can support the entire ecosystem, eliminating friction for users.
We view being able to run smart contracts in the same scaling solution as fundamentally critical since if there's significant demand in running smart contracts from Reddit's ecosystem, this would be a load on Ethereum and would itself require a scaling solution. Moreover, having different scaling solutions for the minting/distribution/spending of points and for third party apps would be burdensome for users as they'd have to constantly shuffle their Points back and forth.
2. Arbitrum at a glance
Arbitrum Rollup has a unique value proposition as it offers a combination of features that no other scaling solution achieves. Here we highlight its core attributes.
Decentralized. Arbitrum Rollup is as decentralized as Ethereum. Unlike some other Layer 2 scaling projects, Arbitrum Rollup doesn't have any centralized components or centralized operators who can censor users or delay transactions. Even in non-custodial systems, centralized components provide a risk as the operators are generally incentivized to increase their profit by extracting rent from users often in ways that severely degrade user experience. Even if centralized operators are altruistic, centralized components are subject to hacking, coercion, and potential liability.
Massive Scaling. Arbitrum achieves order of magnitude scaling over Ethereum's L1 smart contracts. Our software currently supports 453 transactions-per-second for basic transactions (at 1616 Ethereum gas per tx). We have a lot of room left to optimize (e.g. aggregating signatures), and over the next several months capacity will increase significantly. As described in detail below, Arbitrum can easily support and surpass Reddit's anticipated initial load, and its capacity will continue to improve as Reddit's capacity needs grow.
Low cost. The cost of running Arbitrum Rollup is quite low compared to L1 Ethereum and other scaling solutions such as those based on zero-knowledge proofs. Layer 2 fees are low, fixed, and predictable and should not be overly burdensome for Reddit to cover. Nobody needs to use special equipment or high-end machines. Arbitrum requires validators, which is a permissionless role that can be run on any reasonable on-line machine. Although anybody can act as a validator, in order to protect against a “tragedy of the commons” and make sure reputable validators are participating, we support a notion of “invited validators” that are compensated for their costs. In general, users pay (low) fees to cover the invited validators’ costs, but we imagine that Reddit may cover this cost for its users. See more on the costs and validator options below.
Ethereum Developer Experience. Not only does Arbitrum support EVM smart contracts, but the developer experience is identical to that of L1 Ethereum contracts and fully compatible with Ethereum tooling. Developers can port existing Solidity apps or write new ones using their favorite and familiar toolchains (e.g. Truffle, Buidler). There are no new languages or coding paradigms to learn.
Ethereum wallet compatibility. Just as in Ethereum, Arbitrum users need only hold keys, but do not have to store any coin history or additional data to protect or access their funds. Since Arbitrum transactions are semantically identical to Ethereum L1 transactions, existing Ethereum users can use their existing Ethereum keys with their existing wallet software such as Metamask.
Token interoperability. Users can easily transfer their ETH, ERC-20 and ERC-721 tokens between Ethereum and the Arbitrum Rollup chain. As we explain in detail below, it is possible to mint tokens in L2 that can subsequently be withdrawn and recognized by the L1 token contract.
Fast finality. Transactions complete with the same finality time as Ethereum L1 (and it's possible to get faster finality guarantees by trading away trust assumptions; see the Arbitrum Rollup whitepaper for details).
Non-custodial. Arbitrum Rollup is a non-custodial scaling solution, so users control their funds/points and neither Reddit nor anyone else can ever access or revoke points held by users.
Censorship Resistant. Since it's completely decentralized, and the Arbitrum protocol guarantees progress trustlessly, Arbitrum Rollup is just as censorship-proof as Ethereum.
Block explorer. The Arbitrum Rollup block explorer allows users to view and analyze transactions on the Rollup chain.
Limitations
Although this is a bake-off, we're not going to sugar coat anything. Arbitrum Rollup, like any Optimistic Rollup protocol, does have one limitation, and that's the delay on withdrawals.
As for the concrete length of the delay, we've done a good deal of internal modeling and have blogged about this as well. Our current modeling suggests a 3-hour delay is sufficient (but as discussed in the linked post there is a tradeoff space between the length of the challenge period and the size of the validators’ deposit).
Note that this doesn't mean that the chain is delayed for three hours. Arbitrum Rollup supports pipelining of execution, which means that validators can keep building new states even while previous ones are “in the pipeline” for confirmation. As the challenge delays expire for each update, a new state will be confirmed (read more about this here).
So activity and progress on the chain are not delayed by the challenge period. The only thing that's delayed is the consummation of withdrawals. Recall though that any single honest validator knows immediately (at the speed of L1 finality) which state updates are correct and can guarantee that they will eventually be confirmed, so once a valid withdrawal has been requested on-chain, every honest party knows that the withdrawal will definitely happen. There's a natural place here for a liquidity market in which a validator (or someone who trusts a validator) can provide withdrawal loans for a small interest fee. This is a no-risk business for them as they know which withdrawals will be confirmed (and can force their confirmation trustlessly no matter what anyone else does) but are just waiting for on-chain finality.
3. The recipe: How Arbitrum Rollup works
For a description of the technical components of Arbitrum Rollup and how they interact to create a highly scalable protocol with a developer experience that is identical to Ethereum, please refer to the following documents:
Arbitrum Rollup Whitepaper
Arbitrum academic paper (describes a previous version of Arbitrum)
4. Developer docs and APIs
For full details about how to set up and interact with an Arbitrum Rollup chain or validator, please refer to our developer docs, which can be found at https://developer.offchainlabs.com/.
Note that the Arbitrum version described on that site is older and will soon be replaced by the version we are entering in Reddit Bake-Off, which is still undergoing internal testing before public release.
5. Who are the validators?
As with any Layer 2 protocol, advancing the protocol correctly requires at least one validator (sometimes called block producers) that is honest and available. A natural question is: who are the validators?
Recall that the validator set for an Arbitrum chain is open and permissionless; anyone can start or stop validating at will. (A useful analogy is to full nodes on an L1 chain.) But we understand that even though anyone can participate, Reddit may want to guarantee that highly reputable nodes are validating their chain. Reddit may choose to validate the chain themselves and/or hire third-party validators.To this end, we have begun building a marketplace for validator-for-hire services so that dapp developers can outsource validation services to reputable nodes with high up-time. We've announced a partnership in which Chainlink nodes will provide Arbitrum validation services, and we expect to announce more partnerships shortly with other blockchain infrastructure providers.
Although there is no requirement that validators are paid, Arbitrum’s economic model tracks validators’ costs (e.g. amount of computation and storage) and can charge small fees on user transactions, using a gas-type system, to cover those costs. Alternatively, a single party such as Reddit can agree to cover the costs of invited validators.
6. Reddit Contract Support
Since Arbitrum contracts and transactions are byte-for-byte compatible with Ethereum, supporting the Reddit contracts is as simple as launching them on an Arbitrum chain.
Minting. Arbitrum Rollup supports hybrid L1/L2 tokens which can be minted in L2 and then withdrawn onto the L1. An L1 contract at address A can make a special call to the EthBridge which deploys a "buddy contract" to the same address A on an Arbitrum chain. Since it's deployed at the same address, users can know that the L2 contract is the authorized "buddy" of the L1 contract on the Arbitrum chain.
For minting, the L1 contract is a standard ERC-20 contract which mints and burns tokens when requested by the L2 contract. It is paired with an ERC-20 contract in L2 which mints tokens based on whatever programmer provided minting facility is desired and burns tokens when they are withdrawn from the rollup chain. Given this base infrastructure, Arbitrum can support any smart contract based method for minting tokens in L2, and indeed we directly support Reddit's signature/claim based minting in L2.
Batch minting. What's better than a mint cookie? A whole batch! In addition to supporting Reddit’s current minting/claiming scheme, we built a second minting design, which we believe outperforms the signature/claim system in many scenarios.
In the current system, Reddit periodically issues signed statements to users, who then take those statements to the blockchain to claim their tokens. An alternative approach would have Reddit directly submit the list of users/amounts to the blockchain and distribute the tokens to the users without the signature/claim process.
To optimize the cost efficiency of this approach, we designed an application-specific compression scheme to minimize the size of the batch distribution list. We analyzed the data from Reddit's previous distributions and found that the data is highly compressible since token amounts are small and repeated, and addresses appear multiple times. Our function groups transactions by size, and replaces previously-seen addresses with a shorter index value. We wrote client code to compress the data, wrote a Solidity decompressing function, and integrated that function into Reddit’s contract running on Arbitrum.
When we ran the compression function on the previous Reddit distribution data, we found that we could compress batched minting data down to to 11.8 bytes per minting event (averaged over a 6-month trace of Reddit’s historical token grants)compared with roughly 174 bytes of on-chain data needed for the signature claim approach to minting (roughly 43 for an RLP-encoded null transaction + 65 for Reddit's signature + 65 for the user's signature + roughly 8 for the number of Points) .
The relative benefit of the two approaches with respect to on-chain call data cost depends on the percentage of users that will actually claim their tokens on chain. With the above figures, batch minting will be cheaper if roughly 5% of users redeem their claims. We stress that our compression scheme is not Arbitrum-specific and would be beneficial in any general-purpose smart contract platform.
8. Benchmarks and costs
In this section, we give the full costs of operating the Reddit contracts on an Arbitrum Rollup chain including the L1 gas costs for the Rollup chain, the costs of computation and storage for the L2 validators as well as the capital lockup requirements for staking.
Arbitrum Rollup is still on testnet, so we did not run mainnet benchmarks. Instead, we measured the L1 gas cost and L2 workload for Reddit operations on Arbitrum and calculated the total cost assuming current Ethereum gas prices. As noted below in detail, our measurements do not assume that Arbitrum is consuming the entire capacity of Ethereum. We will present the details of our model now, but for full transparency you can also play around with it yourself and adjust the parameters, by copying the spreadsheet found here.
Our cost model is based on measurements of Reddit’s contracts, running unmodified (except for the addition of a batch minting function) on Arbitrum Rollup on top of Ethereum.
On the distribution of transactions and frequency of assertions. Reddit's instructions specify the following minimum parameters that submissions should support:
Over a 5 day period, your scaling PoC should be able to handle:
  • 100,000 point claims (minting & distributing points)
  • 25,000 subscriptions
  • 75,000 one-off points burning
  • 100,000 transfers
We provide the full costs of operating an Arbitrum Rollup chain with this usage under the assumption that tokens are minted or granted to users in batches, but other transactions are uniformly distributed over the 5 day period. Unlike some other submissions, we do not make unrealistic assumptions that all operations can be submitted in enormous batches. We assume that batch minting is done in batches that use only a few percent on an L1 block’s gas, and that other operations come in evenly over time and are submitted in batches, with one batch every five minutes to keep latency reasonable. (Users are probably already waiting for L1 finality, which takes at least that long to achieve.)
We note that assuming that there are only 300,000 transactions that arrive uniformly over the 5 day period will make our benchmark numbers lower, but we believe that this will reflect the true cost of running the system. To see why, say that batches are submitted every five minutes (20 L1 blocks) and there's a fixed overhead of c bytes of calldata per batch, the cost of which will get amortized over all transactions executed in that batch. Assume that each individual transaction adds a marginal cost of t. Lastly assume the capacity of the scaling system is high enough that it can support all of Reddit's 300,000 transactions within a single 20-block batch (i.e. that there is more than c + 300,000*t byes of calldata available in 20 blocks).
Consider what happens if c, the per-batch overhead, is large (which it is in some systems, but not in Arbitrum). In the scenario that transactions actually arrive at the system's capacity and each batch is full, then c gets amortized over 300,000 transactions. But if we assume that the system is not running at capacity--and only receives 300,000 transactions arriving uniformly over 5 days-- then each 20-block assertion will contain about 200 transactions, and thus each transaction will pay a nontrivial cost due to c.
We are aware that other proposals presented scaling numbers assuming that 300,000 transactions arrived at maximum capacity and was executed in a single mega-transaction, but according to our estimates, for at least one such report, this led to a reported gas price that was 2-3 orders of magnitude lower than it would have been assuming uniform arrival. We make more realistic batching assumptions, and we believe Arbitrum compares well when batch sizes are realistic.
Our model. Our cost model includes several sources of cost:
  • L1 gas costs: This is the cost of posting transactions as calldata on the L1 chain, as well as the overhead associated with each batch of transactions, and the L1 cost of settling transactions in the Arbitrum protocol.
  • Validator’s staking costs: In normal operation, one validator will need to be staked. The stake is assumed to be 0.2% of the total value of the chain (which is assumed to be $1 per user who is eligible to claim points). The cost of staking is the interest that could be earned on the money if it were not staked.
  • Validator computation and storage: Every validator must do computation to track the chain’s processing of transactions, and must maintain storage to keep track of the contracts’ EVM storage. The cost of computation and storage are estimated based on measurements, with the dollar cost of resources based on Amazon Web Services pricing.
It’s clear from our modeling that the predominant cost is for L1 calldata. This will probably be true for any plausible rollup-based system.
Our model also shows that Arbitrum can scale to workloads much larger than Reddit’s nominal workload, without exhausting L1 or L2 resources. The scaling bottleneck will ultimately be calldata on the L1 chain. We believe that cost could be reduced substantially if necessary by clever encoding of data. (In our design any compression / decompression of L2 transaction calldata would be done by client software and L2 programs, never by an L1 contract.)
9. Status of Arbitrum Rollup
Arbitrum Rollup is live on Ethereum testnet. All of the code written to date including everything included in the Reddit demo is open source and permissively licensed under the Apache V2 license. The first testnet version of Arbitrum Rollup was released on testnet in February. Our current internal version, which we used to benchmark the Reddit contracts, will be released soon and will be a major upgrade.
Both the Arbitrum design as well as the implementation are heavily audited by independent third parties. The Arbitrum academic paper was published at USENIX Security, a top-tier peer-reviewed academic venue. For the Arbitrum software, we have engaged Trail of Bits for a security audit, which is currently ongoing, and we are committed to have a clean report before launching on Ethereum mainnet.
10. Reddit Universe Arbitrum Rollup Chain
The benchmarks described in this document were all measured using the latest internal build of our software. When we release the new software upgrade publicly we will launch a Reddit Universe Arbitrum Rollup chain as a public demo, which will contain the Reddit contracts as well as a Uniswap instance and a Connext Hub, demonstrating how Community Points can be integrated into third party apps. We will also allow members of the public to dynamically launch ecosystem contracts. We at Offchain Labs will cover the validating costs for the Reddit Universe public demo.
If the folks at Reddit would like to evaluate our software prior to our public demo, please email us at [email protected] and we'd be more than happy to provide early access.
11. Even more scaling: Arbitrum Sidechains
Rollups are an excellent approach to scaling, and we are excited about Arbitrum Rollup which far surpasses Reddit's scaling needs. But looking forward to Reddit's eventual goal of supporting hundreds of millions of users, there will likely come a time when Reddit needs more scaling than any Rollup protocol can provide.
While Rollups greatly reduce costs, they don't break the linear barrier. That is, all transactions have an on-chain footprint (because all calldata must be posted on-chain), albeit a far smaller one than on native Ethereum, and the L1 limitations end up being the bottleneck for capacity and cost. Since Ethereum has limited capacity, this linear use of on-chain resources means that costs will eventually increase superlinearly with traffic.
The good news is that we at Offchain Labs have a solution in our roadmap that can satisfy this extreme-scaling setting as well: Arbitrum AnyTrust Sidechains. Arbitrum Sidechains are similar to Arbitrum Rollup, but deviate in that they name a permissioned set of validators. When a chain’s validators agree off-chain, they can greatly reduce the on-chain footprint of the protocol and require almost no data to be put on-chain. When validators can't reach unanimous agreement off-chain, the protocol reverts to Arbitrum Rollup. Technically, Arbitrum Sidechains can be viewed as a hybrid between state channels and Rollup, switching back and forth as necessary, and combining the performance and cost that state channels can achieve in the optimistic case, with the robustness of Rollup in other cases. The core technical challenge is how to switch seamlessly between modes and how to guarantee that security is maintained throughout.
Arbitrum Sidechains break through this linear barrier, while still maintaining a high level of security and decentralization. Arbitrum Sidechains provide the AnyTrust guarantee, which says that as long as any one validator is honest and available (even if you don't know which one will be), the L2 chain is guaranteed to execute correctly according to its code and guaranteed to make progress. Unlike in a state channel, offchain progress does not require unanimous consent, and liveness is preserved as long as there is a single honest validator.
Note that the trust model for Arbitrum Sidechains is much stronger than for typical BFT-style chains which introduce a consensus "voting" protocols among a small permissioned group of validators. BFT-based protocols require a supermajority (more than 2/3) of validators to agree. In Arbitrum Sidechains, by contrast, all you need is a single honest validator to achieve guaranteed correctness and progress. Notice that in Arbitrum adding validators strictly increases security since the AnyTrust guarantee provides correctness as long as any one validator is honest and available. By contrast, in BFT-style protocols, adding nodes can be dangerous as a coalition of dishonest nodes can break the protocol.
Like Arbitrum Rollup, the developer and user experiences for Arbitrum Sidechains will be identical to that of Ethereum. Reddit would be able to choose a large and diverse set of validators, and all that they would need to guarantee to break through the scaling barrier is that a single one of them will remain honest.
We hope to have Arbitrum Sidechains in production in early 2021, and thus when Reddit reaches the scale that surpasses the capacity of Rollups, Arbitrum Sidechains will be waiting and ready to help.
While the idea to switch between channels and Rollup to get the best of both worlds is conceptually simple, getting the details right and making sure that the switch does not introduce any attack vectors is highly non-trivial and has been the subject of years of our research (indeed, we were working on this design for years before the term Rollup was even coined).
12. How Arbitrum compares
We include a comparison to several other categories as well as specific projects when appropriate. and explain why we believe that Arbitrum is best suited for Reddit's purposes. We focus our attention on other Ethereum projects.
Payment only Rollups. Compared to Arbitrum Rollup, ZK-Rollups and other Rollups that only support token transfers have several disadvantages:
  • As outlined throughout the proposal, we believe that the entire draw of Ethereum is in its rich smart contracts support which is simply not achievable with today's zero-knowledge proof technology. Indeed, scaling with a ZK-Rollup will add friction to the deployment of smart contracts that interact with Community Points as users will have to withdraw their coins from the ZK-Rollup and transfer them to a smart contract system (like Arbitrum). The community will be best served if Reddit builds on a platform that has built-in, frictionless smart-contract support.
  • All other Rollup protocols of which we are aware employ a centralized operator. While it's true that users retain custody of their coins, the centralized operator can often profit from censoring, reordering, or delaying transactions. A common misconception is that since they're non-custodial protocols, a centralized sequencer does not pose a risk but this is incorrect as the sequencer can wreak havoc or shake down users for side payments without directly stealing funds.
  • Sidechain type protocols can eliminate some of these issues, but they are not trustless. Instead, they require trust in some quorum of a committee, often requiring two-third of the committee to be honest, compared to rollup protocols like Arbitrum that require only a single honest party. In addition, not all sidechain type protocols have committees that are diverse, or even non-centralized, in practice.
  • Plasma-style protocols have a centralized operator and do not support general smart contracts.
13. Concluding Remarks
While it's ultimately up to the judges’ palate, we believe that Arbitrum Rollup is the bakeoff choice that Reddit kneads. We far surpass Reddit's specified workload requirement at present, have much room to optimize Arbitrum Rollup in the near term, and have a clear path to get Reddit to hundreds of millions of users. Furthermore, we are the only project that gives developers and users the identical interface as the Ethereum blockchain and is fully interoperable and tooling-compatible, and we do this all without any new trust assumptions or centralized components.
But no matter how the cookie crumbles, we're glad to have participated in this bake-off and we thank you for your consideration.
About Offchain Labs
Offchain Labs, Inc. is a venture-funded New York company that spun out of Princeton University research, and is building the Arbitrum platform to usher in the next generation of scalable, interoperable, and compatible smart contracts. Offchain Labs is backed by Pantera Capital, Compound VC, Coinbase Ventures, and others.
Leadership Team
Ed Felten
Ed Felten is Co-founder and Chief Scientist at Offchain Labs. He is on leave from Princeton University, where he is the Robert E. Kahn Professor of Computer Science and Public Affairs. From 2015 to 2017 he served at the White House as Deputy United States Chief Technology Officer and senior advisor to the President. He is an ACM Fellow and member of the National Academy of Engineering. Outside of work, he is an avid runner, cook, and L.A. Dodgers fan.
Steven Goldfeder
Steven Goldfeder is Co-founder and Chief Executive Officer at Offchain Labs. He holds a PhD from Princeton University, where he worked at the intersection of cryptography and cryptocurrencies including threshold cryptography, zero-knowledge proof systems, and post-quantum signatures. He is a co-author of Bitcoin and Cryptocurrency Technologies, the leading textbook on cryptocurrencies, and he has previously worked at Google and Microsoft Research, where he co-invented the Picnic signature algorithm. When not working, you can find Steven spending time with his family, taking a nature walk, or twisting balloons.
Harry Kalodner
Harry Kalodner is Co-founder and Chief Technology Officer at Offchain Labs where he leads the engineering team. Before the company he attended Princeton as a Ph.D candidate where his research explored economics, anonymity, and incentive compatibility of cryptocurrencies, and he also has worked at Apple. When not up at 3:00am writing code, Harry occasionally sleeps.
submitted by hkalodner to ethereum [link] [comments]

Importance Of Blockchain for Business

Importance Of Blockchain for Business

Blockchain Technology
Blockchain technology has been the latest trend in finance Industry. Ever since the first cryptocurrency was published, Blockchain has gained popularity.
But ever wondered Why Blockchain is Important and why Businesses are so keen on adopting it?
Let’s take a look at it!
What is Blockchain?
Blockchain is a Public Ledger that has its data distributed to all the networks. It is a peer-to-peer network where each ledger has a copy. It consists of Blocks that hold the records of many transactions. Since the data distribution is on a ledger it is difficult for a hacker to tamper with the data. Any alteration or change in data will be noticed eventually. Due to its nature, Blockchain has been used as the foundation for many cryptocurrencies like Bitcoin.
Why Blockchain Is Important?
Decentralization
In the Decentralization system, there is no involvement of a third-party system, Blockchain Technology is Decentralized. Here all the transactions are recorded on a ledger and monitored by computers. This gives people unprecedented access to options that are not available in the market. This property of Blockchain can help businesses create banks for the people. Yes, the majority of people in India do not have a traditional bank account yet, this feature of Blockchain provides an opportunity for people to create a bank account. All they have to do is just open an online account and have access to a digital wallet instantly.
Transaction Time is Reduced
Blockchain technology adds value to the business by lowering the time required for transactions. As we know time plays a significant role in Blockchain Technology. It eliminates the time that a normal or a traditional bank would take to complete your transactions. Blockchain Program is a multi-featured desktop wallet that makes it hassle-free for businesses and its users to monitor their funds.
Immutability
This technology is immutable and creates platforms for many businesses that want to operate their system more precisely.
Example: Supply Chain Management
This feature enables companies to track their packages on the way for production and ensures there is no hamper done. They can easily verify where their items and goods are along with the supply chain, and this removes guesswork and inefficiencies.
Security
Blockchain uses complex algorithms that add a layer of security to the data on the network. It uses cryptography to complete all transactions. Each block on the network carries a unique hash, that cannot be altered by a third- party system or hackers. This gives companies an assurance that all their data is stored securely.
Role Of Blockchain In various Business Sectors:
In Banking and Finance
Digital Financial Activities are the most benefited sectors due to Blockchain like digital assets, programmable money, and smart contracts.
Some of its uses are listed below:
  • Insurance, Sales, and trading
  • Payments for domestic and international
  • Fund Launch and Trade Finance Sectors.
In Healthcare
Healthcare is another important sector that benefits from Blockchain Technology. Patients need to carry documents while visiting hospitals, or sometimes it takes a lot of time to retrieve their medical history data. Blockchain technology serves as a solution to this problem. Some of its applications are:
  • Tracing Of Drugs
  • Clinical Trials
  • Patient Consent Management
  • Securing of Electronic Health Records(ETR’s)
In Supply Chain Management
Supply Chain Management involves the movement of work from the processing of raw materials till it has been delivered satisfactorily to the customers. Blockchain can be used in supply chain management for tracking, exchange of agreements, smart contracts, and payment. It will help businesses track their product from the time it is picked, up till it reaches the customers. Since Blockchain has a ledger and all the data is stored on it, therefore it can be shared with trusted parties. This reduces any kind of fraud, errors, and tracking fees in the business. Its application in Blockchain can be listed as below:
  • Tracking payment in Automotive Suppliers
  • In the food Industry (Example: Walmart)
  • Solar Power Microgrids
Ending Thoughts
The rise in Blockchain technology has already changed the face of the technology industry and will witness massive growth in the upcoming years. According to our team of experts in Blockchain Development Services, the market is expected to climb over 39 Billion U.S dollars in size by 2025 and 69% of Banks are currently exploring Blockchain.
submitted by UltimezTechnology12 to u/UltimezTechnology12 [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

How does cryptocurrency works?

How does cryptocurrency works?
When we were a much smaller society, people could trade in the community pretty easily, but as the distance in our trade grew, we ended up inventing institutions such as banks, markets, stocks etc. that help us to conduct financial transactions. The currencies we are operating with nowadays are bills or coins, controlled by a centralized authority and tracked by previously mentioned financial institutions. The thing is, having a third party in our money transactions is not always what we wish for. But fortunately, today we have a tool that allows us to make fast and save financial transactions without any middlemen, it has no central authority and it is regulated by math. Sounds cool, right? Cryptocurrency is this tool. It is quite a peculiar system, so let’s take a closer look at it.
by StealthEX

Layers of a crypto-cake

Layer 1: Blockchain

First of all – any cryptocurrency is based on the blockchain. In simple words, blockchain is a kind of a database. It stores information in batches, called blocks that are linked together in a chronological way. As the blockchain is not located in one place but rather on thousands of computers around the globe, the blockchain and the transactions thus are decentralized, they have no head center. The newest blocks of transaction are continuously added on (or changed) to all the previous blocks. That’s how you get a cryptocurrency blockchain.
The technology’s name is a compound of the words “block” and “chain”, as the “blocks” of information are linked together in a “chain”. That’s how crypto security works – the information in the recently created block depends on the previous one. It means that no block can be changed without affecting the others, this system prevents a blockchain from being hacked.
There are 2 kinds of blockchain: private and public. Public, as goes by its name, is publicly available blockchain, whereas private blockchain is permissioned, which only a limited number of people have access to.

Layer 2: Transaction

In fact, everything begins with the intention of someone to complete a transaction. A transaction itself is a file that consists of the sender’s and recipient’s public keys (wallet addresses) and the amount of coins transferred. The sender begins by logging in into his cryptocurrency wallet with the private key – a unique combination of letters and numbers, something you would call a personal password in a bank. Now the transaction is signed and the first step which is called basic public key cryptography is completed.
Then the signed (encrypted) transaction is shared with everyone in the cryptocurrency network, meaning it gets to every other peer. We should mention that the transaction is firstly queued up to be added to the public ledger. Then, when it’s broadcasted to the public ledger, all the computers add a new transaction to a shared list of recent transactions, known as blocks.
Having a ledger forces everyone to “play fair” and reduce the risk of spending extra. The numbers of transactions are publicly available, but the information about senders and receivers is encrypted. Each transaction holds on to a unique set of keys. Whoever owns a set of keys, owns the amount of cryptocurrency associated with those keys (just like whoever owns a bank account owns the money in it). This is how peer-to-peer technology works.

Layer 3: Mining

Now let’s talk about mining. Once confirmed, the transaction is forever captured into the blockchain history**.** The verification of the block is done by Cryptocurrency Miners – they verify and then add blocks to the public ledger. To verify them, miners go down on the road of solving a very difficult math puzzle using powerful software, which is that the computer needs to produce the correct sequence number – “hash” – that is specific to the given block, there is not much chance of finding it. Whoever solves the puzzle first, gets the opportunity to officially add a block of transactions to the ledger and get fresh and new coins as reward. The reward is given in whatever cryptocurrency’s blockchain miners are operating into. For example, BTC originally used to reward miners in 50 BTC, but after the first halving it decreased to 25 BTC, and at present time it is 6.25 BTC. The process of miners competing against each other in order to complete the transactions on the network and get rewarded is known as the Proof-of-Work (PoW) algorithm, which is natural for BTC and many other cryptocurrencies. Also there are another consensus mechanisms: Proof-of-Stake (PoS), Delegated Proof-of-Stake (dPoS), Proof-of-Authority (PoA), Byzantine Fault Tolerance (BFT), Practical Byzantine Fault Tolerance (pBFT), Federated Byzantine Agreement (FBA) and Delegated Byzantine Fault Tolerance (dBFT). Still, all of them are used to facilitate an agreement between network participants.
The way that system works – when many computers try to verify a block – guarantees that no computer is going to monopolize a cryptocurrency market. To ensure the competition stays fair, the puzzle becomes harder as more computers join in. Summing it up, let’s say that mining is responsible for two aspects of the crypto mechanism: producing the proof and allowing more coins to enter circulation.

Types of cryptocurrency

In the virtual currency world there are a bunch of different cryptocurrency types with their own distinctive features.
The first cryptocurrency is, of course, Bitcoin. Bitcoin is the first crypto coin ever created and used. BTC is the most liquid cryptocurrency in the market and has the highest market cap among all the cryptocurrencies.

Altcoins

The term ‘altcoins’ means ‘alternatives’ of Bitcoin. The first altcoin Namecoin was created in 2011 and later on hundreds of them appeared in crypto-world, among them are Ravencoin, Dogecoin, Litecoin, Syscoin etc. Altcoins were initially launched with a purpose to overcome Bitcoin’s weak points and become upgraded substitutes of Bitcoin. Altcoins usually stand an independent blockchain and have their own miners and wallets. Some altcoins actually have boosted features yet none of them gained popularity akin to Bitcoin. More about altcoins in our article.

Tokens

Token is a unit of account that is used to represent the digital balance of an asset. Basically tokens represent an asset or utility that usually are made on another blockchain. Tokens are registered in a database based on blockchain technology, and they are accessed through special applications using electronic signature schemes.
Tokens and cryptocurrencies are not the same thing. Let’s explain it more detailed:
• First of all, unlike cryptocurrencies, tokens can be issued and managed both centralized and decentralized.
• The verification of the token transactions can be conducted both centralized and decentralized, when cryptocurrencies’ verification is only decentralized.
• Tokens do not necessarily run their own blockchain, but for cryptocurrencies having their own blockchain is compulsory.
• Tokens’ prices can be affected by a vast range of factors such as demand and supply, tokens’ additional emission, or binding to other assets. On the other hand, the price of cryptocurrencies is completely regulated by the market.
Tokens can be:
• Utility tokens – something that accesses a user to a product or service and support dApps built on the blockchain.
• Governance tokens – fuel for voting systems executed on the blockchain.
• Transactional tokens – serve as a unit of accounts and used for trading.
• Security tokens – represent legal ownership of an asset, can be used in addition to or in place of a password.
Tokens are usually created through smart contracts and are often adapted to an ICO – initial coin offering, which is a means of crowdfunding. It is much easier to create tokens, that is why they make a majority of coins in existence. Altcoin and token blockchains work on the concept of smart contracts or decentralized applications, where the programmable, self-executing code is ruling the transactions within a blockchain. By the way, the vast majority of tokens were distributed on the Ethereum platform.

Forks

Generally a fork occurs when a protocol code, on which the blockchain is operating, is being changed, modified and updated by developers or users. Due to the changes, the blockchain splits into 2 paths: an old way of doing things and a new way. These changes may happen because: a disagreement between users and creators; a major hack, as it was with Ethereum; developers’ decision to fix errors and add new functionality. The blockchain mainly splits into hard forks and soft forks. Shortly speaking, coin hard forks cannot work with older versions while soft forks still can work with older versions.
Hard fork – after a hard fork, a new version is completely separated from the previous one, there’s no connection between them anymore, although the new version keeps the data of all the previous transactions but now on, each version will have its own transaction history. In order to use the new versions, every node has to upgrade their software. A hard fork requires majority support (or consensus) from coin holders with a connection to the coin network. If enough users don’t update then you will be unable to get a clean upgrade which could lead to a break in the blockchain.
Soft fork – a protocol change, but with backward compatibility. The rules of the network have been changed, but nodes running the old software will still be able to validate transactions, but those updated nodes won’t be able to mine new blocks. So to be used and useful, soft forks require the majority of the network’s hash power. Otherwise, they risk becoming set out and anyway ending up as a hard fork.

Stablecoins

As it comes from the name, stablecoins are price-stabilized that are becoming big in the crypto world. Still enjoying most of the “typical-cryptocurrency” benefits, it is standing out as a fixed and stable coin, not volatile at all. Stablecoins’ values are stabilized by pegging them to other assets such as the US Dollar or gold.
Stablecoins include Tether (USDT), Standard (PAX), Gemini Dollar (GUSD) which are backed by the US Dollar and approved by the New York State Department of Financial Services.

Conclusion

Now that we hacked into cryptocurrency, you probably understand that it is much less mysterious than it first seemed. Nowadays, cryptocurrencies are making the revolution of the financial institution. For example, Bitcoin is currently used in 96 countries and growing, with more than 12,000 transactions per hour. More and more investors are involved, banks and governments realize that these cutting edge technologies are prone to draw their control away. Cryptocurrencies are slowly changing the world and you can choose – either stand beside and observe or become part of history in the making.
And remember if you need to exchange your coins StealthEX is here for you. We provide a selection of more than 300 coins and constantly updating the cryptocurrency list so that our customers will find a suitable option. Our service does not require registration and allows you to remain anonymous. Why don’t you check it out? Just go to StealthEX and follow these easy steps:
✔ Choose the pair and the amount for your exchange. For example BTC to ETH.
✔ Press the “Start exchange” button.
✔ Provide the recipient address to which the coins will be transferred.
✔ Move your cryptocurrency for the exchange.
✔ Receive your coins.
Follow us on Medium, Twitter, Facebook, and Reddit to get StealthEX.io updates and the latest news about the crypto world. For all requests message us via [[email protected]](mailto:[email protected]).
The views and opinions expressed here are solely those of the author. Every investment and trading move involves risk. You should conduct your own research when making a decision.
Original article was posted on https://stealthex.io/blog/2020/09/29/how-does-cryptocurrency-works/
submitted by Stealthex_io to StealthEX [link] [comments]

Recap on CoinEx & Avalanche AMA Aug 5, 2020

Recap on CoinEx & Avalanche AMA Aug 5, 2020
Written by SatoshisAngels
Published by read.cash
On August 5th 2020, Satoshi’s Angels hosted an AMA for CoinEx on “How BCH and Avalanche Are Bringing Financial Freedom to 6 Billion People” on a Chinese platform Bihu. During the 100-minute event, Haipo Yang of ViaBTC and CoinEx, and Emin Gun Sirer of AVA Labs shared their in-depth views on such topics as different consensus mechanisms, community governance, IPFS, Defi. And Haipo explained why he wants to fork BCH. This is the full text.
You can check out the full AMA here (mostly in Chinese with some English translation).

https://preview.redd.it/x790bw58axf51.png?width=1920&format=png&auto=webp&s=03c8af942f8f14d98d5dd693adf9e2a50448d61d
Cindy Wang (Satoshi’s Angels): There are news saying that you are to fork BCH. Is it a marketing makeover? Are you serious about it?
Haipo Yang: It’s definitely not a marketing makeover. But the details are not decided yet.
Over the past three years, the BCH community has gone through multiple discussions from reducing block time, changing mining algorithms, adding smart contracts, etc. But none of these disputes have been well settled.
BCH is a big failure in terms of governance. A lack of good governance has made it fall in disorder. It is too decentralized to make progress.
You may know that the first BCH block was mined by ViaBTC. And we gave a lot of support to it indeed. But we didn’t dominate the fork. The Chinese community in particular thought I had a lot of influence, but it was not true.
I think the whole community is very dissatisfied with Bitcoin ABC, but it is difficult to replace them or change the status quo. So I am thinking of creating a new branch of BCH. The idea is still in early stage. I welcome anyone interested to participate and discuss it with me.
Wang: Professor Emin, what’s your attitude to fork? Do you think it’s a good timing to fork BCH?
Emin Gun Sirer: I am a big fan of BCH. It adheres to the original vision of Satoshi Nakamoto. I like the technical roadmap of BCH. But just like what Haipo mentioned, BCH lacks a good governance mechanism. There are always something that can cause BCH community to divide itself.
But I think it’s not enough to just have a good governance mechanism. There are many good proposals in the community but failed to be adopted in the end. I think BCH needs social leadership to encourage discussion when there are new proposals.
Wang: We are all curious to know How Avalanche got its name?
I know that Avalanche doesn’t mean well in Chinese. But in English, it’s a very powerful word. Avalanche represents a series of algorithms piling together like a mountain. When decisions slowly form, the ball (nodes in the network) on top of the mountain starts going down the hill on one side, and it gets bigger and bigger, and like an avalanche and it becomes unstoppable, making the transaction final.
Wang: Prof. Emin, I know that you are a big blocker. Have you ever considered implementing Avalanche based on BCH? Why create another chain?
Sirer: Of course I considered that. Satoshi Nakamoto consensus is wonderful, but the proof-of-work mechanism and Nakamoto consensus base protocols have some shortcomings, such as network latency, and it is hard to scale. Avalanche, instead, is totally different, and is the new biggest breakthrough in the past 45 years. It is flexible, fast, and scalable. I’d love to implement BCH on top of avalanche in the future, to make BCH even better by making 0-conf transactions much more secure.
Wang: As an old miner, why did CoinEx Chain choose to “abandon” POW, and turn to POS mechanism?
Haipo: Both POW and POS consensus algorithms have their own advantages. POW is not just a consensus algorithm, but also a more transparent and open distribution method of digital currency. Anyone can participate in it through mining.
POW is fairer. For a POS-based network, participants must have coins. For example, you need to invest ICO projects to obtain coins. But developers can get a lot of coins almost for free. In addition, POW is more open. Anyone can participate without holding tokens. For example, as long as you have a computer and mining rigs, you can participate in mining. Openness and fairness are two great features of POW. POS is more advanced, safe and efficient.
POS is jointly maintained by the token holders, and there is no problem of 51% attacks. Those who hold tokens are more inclined to protect the network than to destroy the network for their own interests. To disrupt the network, you need to buy at least two-thirds of the token, which is very difficult to achieve. And when you actually hold so many coins, it’s barely possible for you to destroy the network.
POW has the problem of 51% attack. For example, ETC just suffered the 51% attack on August 3. And the cost to do that is very low. It can be reorganized with only tens of thousands of dollars. This is also a defect of POW.
In addition, in terms of TPS and block speed, POS can achieve second-level speed and higher TPS. Therefore, CoinEx Chain chose POS because it can bring a faster transaction experience. This is very important for decentralized exchanges. Both POW and POS have their own advantages. It’s a matter of personal choice. When choosing a consensus mechanism, the choice must be made according to the characteristics of the specific project.
https://preview.redd.it/upbayijaaxf51.jpg?width=1055&format=pjpg&auto=webp&s=703e3b6a493a76f86bc9045e784d174bde9d3c42
Wang: Ethereum is switching to ETH 2.0. If they succeed, do you think it will lead the next bull market?
Sirer: If Ethereum 2.0 can be realized, it must be a huge success.
But I doubt it can be launched anytime soon considering that it has been constantly delayed. And even if it comes out, I am not so sure if it will address the core scaling problem. And the main technology in Ethereum 2.0 is sharding. Sharding technology divides the Ethereum networks into small parallel groups, but I think what will happen is everyone wants to be in the same “shard” so the sharding advantages might not be realizable in Ethereum 2.0.
Avalanche supports Ethereum’s virtual machine, and Avalanche can realize 1 second level confirmation, while with sharding finalizing confirmation takes 5–6 seconds at best. Avalanche approach to make Ethereum scale is superior to Ethereum 2.0. There are many big players behind Ethereum 2.0, and I wish them success. But I believe that Avalanche will be the fastest and best Smart Contract platform in the crypto space, and it is compatible with Ethereum.
Wang: Why is Avalanche a real breakthrough?
Sirer: Avalanche is fundamentally different from previous consensus mechanisms. It’s very fast with TPS surpasses 6500, which is three times that of VISA. Six confirmations can be achieved in one second. Compared with the POW mechanism of Bitcoin and Bitcoin Cash, Avalanche’s participation threshold is very low. It allows multiple virtual machines to be built on the Avalanche protocol.
Avalanche is not created to compete with Bitcoin or fiat currencies such as the US dollar and RMB. It’s not made to compete with Ethereum, which is defined as the “world’s computer”. Avalanche is positioned to be an asset issuance platform to tokenize assets in the real world.
Wang: How do you rank the importance of community, development, governance, and technology to a public chain?
Sirer: These four are like the legs of a table. Every foot is very important. The table cannot stand without strong support.
A good community needs to be open to welcome developers and people. Good governance is especially important, to figure out what users need and respect their voices. Development needs to be decentralized. Avalanche has developers all over the world. And it has big companies building on top of Avalanche.
Yang: From a long-term perspective, I think governance is the most important thing, which is the same as running a company.
In the long run, technology is not important. Blockchain technology is developed based on an open source softwares that are free to the community. Community is also not the most important factor.
I think the most important thing is governance. Decentralization is more about technical. For example, Bitcoin, through a decentralized network method, ensures the openness and transparency of data assets, and the data on the chain cannot be tampered with, ensuring that the total amount of coins has a fixed upper limit.
But at the governance level, all coins are centralized at some degree. For example, BCH developers can decide to modify the protocol. In a sense, it is the same as managing a company.
Historically, the reasons for the success and failure of companies all stem from bad governance. For example, Apple succeeded based on Steve Jobs’s charisma, leadership and the pursuit of user experience. When Jobs was kicked out, Apple suffered great losses. After Jobs returned, he made Apple great again.
Issues behind Bitmain is also about governance. Simply put, governance requires leaders who have a longer-term vision and are more capable of coordinating and balancing the resources and interests of all parties to lead the community.
In the blockchain world, many people focus on technology. In fact, technology is not enough to make great products. User experience is most important. Users don’t care about the blockchain technology itself, but more concerned about whether it is easy to use and whether it can solve my problem.
We need to figure out how to deliver a product like Apple. The pursuit of user experience is also governance in nature. And governance itself lies in the soul of key leaders in the community.
Realize tokenization of assets in.
https://preview.redd.it/14jf1bvcaxf51.jpg?width=1082&format=pjpg&auto=webp&s=c312912142c38de986f42912086e205354162190
Wang: Speaking of asset tokenization, I would like to ask Haipo, do you think the market for assets on the chain is big?
Yang: It must be very big. We need to see which assets can be tokenized.
Assets that can be tokenized are standardized assets, sush as currencies and securities.
  1. In terms of currency, Tether has issued over 10 billion U.S. dollars. Many people think that’s too much. But I think this market is underestimated. The market for stablecoins in the future must be hundreds of billions or even trillions, especially after the release of Facebook’s Libra. Even US dollar might be issued based on the blockchain in the future.
At present, the settlement of USD currency is through the SWIFT system. But the SWIFT system itself is only a clearing network, a messaging system, not a settlement network. It takes a long time for clearing and settlement, and it is not reliable. But both USDT and USDC can quickly realize cross-border transfers in seconds and realize asset delivery. Even sovereign currencies are likely to be issued on the blockchain. I believe RMB also has such a plan.
  1. Equity and securities markets are the largest market. But they have strict requirements for market access.
Whether a stock is listed on A-shares or in the American markets, it’s hard to obtain them. I believe that the blockchain can completely release the demand through decentralization. It can allow any tiny company or even a project to issue, circulate and finance a token.
There may be only tens of thousands of stocks currently traded globally. There are also tens of thousands of tokens in the crypto space. I believe that millions or more of assets will be traded and circulated in the future. This can only be realized through decentralized technology and organization.
The market for assets tokenization will be huge. And at present, the entire blockchain technology is still very primitive. Bitcoin and Ethereum only have a few or a dozen TPS, which is far from meeting market demand. This is why CoinEx is committed to building a decentralized Dex public chain.
Wang: Avalanche’s paper was first published on IPFS. What do you think of IPFS?
Sirer: I personally like IPFS very much. It is a decentralized storage solution.
Yang: There is no doubt that IPFS solves the problem of decentralized storage, and can be robust in the blockchain world, and can replace HPPT services. But there are still three problems:
  1. IPFS is not for ordinary users. Everybody needs BCH and BTC, but only developers need IPFS, which is a relatively niche market;
  2. IPFS is more expensive than traditional storage solutions, which further reduces its practicality. In order to achieve decentralization, more copies must be stored, and more hardware devices must be consumed. In the end, these costs will be on to users.
  3. There may be compliance issues. If you use IPFS to store sensitive information, such as info from WikiLeaks, it may end up threatening national security. I doubt that decentralized storage and decentralized public chains can survive under the joint pressure of global governments.
The IPFS project solves certain problems. But from the perspective of application prospects, I am pessimistic.
Wang: What do you think of Defi?
Yang: I want to talk about the concept first.
Broadly speaking, the entire blockchain industry is DeFi in nature. Blockchain is to realize the circulation of currency, equity, and asset value through decentralization.
So in a broad sense, blockchain itself is DeFi. In a narrow sense, DeFi is a financial agreement based on smart contracts. DeFi, through smart contracts, can build applications more flexibly. For example, before we could only use Bitcoin to transfer and pay. Now with smart contracts, flexible functions such as lending, exchange, mortgage , etc. are available. The entire blockchain industry is gradually evolving under the conditions of DeFi. DeFi will definitely get greater development in the future.
Sirer: I think Defi will definitely have a huge impact. DeFi is not only an innovation in the cryptocurrency field, but also an innovation in the financial field. Wall Street companies have stagnated for years with no innovation. Avalanche fits different DeFi needs, including performance and compliance. In the future, not only will Wall Street simply adopt DeFi, but DeFi will grow into a huge market that will eventually replace the traditional financial system.
Questions from the community:
1. How does Avalanche integrate with DeFi?
Sirer: At present, all DeFi applications on Avalanche have surpassed Ethereum. What can be achieved on Ethereum can be achieved on Avalanche with better user experience. We are currently connecting with popular DeFi projects such as Compound and MakerDao to add part of or all of their functions.
At present, Avalanche is working on decentralized exchange (DEX). The current DEXs are limited by speed and performance but when they are built on top of Avalanche it will be real-time and very fast.
2. How many developers does BCH have?
Yang: I think it does not matter how many developers there are. What matters is what should be developed. I watched Jobs’ video the other day, and it inspired me a lot. We are not piecing together technology to see what technology can do. It’s we figure out what we want first and then we use the technology we need.
The entire blockchain community worship developers. Such as they call Vitalik “V God”. It’s not necessary to treat developers as wizards. Developers are programmers, and I myself is also a programmer.
ViaBTC has a development team of over 100 people, including core members from Copernicus (a dev team formerly belonged to Bitmain). Technically we are very confident to build faster, stabler, and better user experience products.
submitted by CoinExcom to btc [link] [comments]

How are FPGAs used in trading?

A field-programmable gate array (FPGA) is a chip that can be programmed to suit whatever purpose you want, as often as you want it and wherever you need it. FPGAs provide multiple advantages, including low latency, high throughput and energy efficiency.
To fully understand what FPGAs offer, imagine a performance spectrum. At one end, you have the central processing unit (CPU), which offers a generic set of instructions that can be combined to carry out an array of different tasks. This makes a CPU extremely flexible, and its behaviour can be defined through software. However, CPUs are also slow because they have to select from the available generic instructions to complete each task. In a sense, they’re a “jack of all trades, but a master of none”.
At the other end of the spectrum sit application-specific integrated circuits (ASICs). These are potentially much faster because they have been built with a single task in mind, making them a “master of one trade”. This is the kind of chip people use to mine bitcoin, for example. The downside of ASICs is that they can’t be changed, and they cost time and money to develop. FPGAs offer a perfect middle ground: they can be significantly faster than a CPU and are more flexible than ASICs.
FPGAs contain thousands, sometimes even millions, of so-called core logic blocks (CLBs). These blocks can be configured and combined to process any task that can be solved by a CPU. Compared with a CPU, FPGAs aren’t burdened by surplus hardware that would otherwise slow you down. They can therefore be used to carry out specific tasks quickly and effectively, and can even process several tasks simultaneously. These characteristics make them popular across a wide range of sectors, from aerospace to medical engineering and security systems, and of course finance.
How are FPGAs used in the financial services sector?
Speed and versatility are particularly important when buying or selling stocks and other securities. In the era of electronic trading, decisions are made in the blink of an eye. As prices change and orders come and go, companies are fed new information from exchanges and other sources via high-speed networks. This information arrives at high speeds, with time measured in nanoseconds. The sheer volume and speed of data demands a high bandwidth to process it all. Specialized trading algorithms make use of the new information in order to make trades. FPGAs provide the perfect platform to develop these applications, as they allow you to bypass non-essential software as well as generic-purpose hardware.
How do market makers use FPGAs to provide liquidity?
As a market maker, IMC provides liquidity to buyers and sellers of financial instruments. This requires us to price every instrument we trade and to react to the market accordingly. Valuation is a view on what the price of an asset should be, which is handled by our traders and our automated pricing algorithms. When a counterpart wants to buy or sell an asset on a trading venue, our role is to always be there and offer, or bid, a fair price for the asset. FPGAs enable us to perform this key function in the most efficient way possible.
At IMC, we keep a close eye on emerging technologies that can potentially improve our business. We began working with FPGAs more than a decade ago and are constantly exploring ways to develop this evolving technology. We work in a competitive industry, so our engineers have to be on their toes to make sure we’re continuously improving.
What does an FPGA engineer do?
Being an FPGA engineer is all about learning and identifying new solutions to challenges as they arise. A software developer can write code in a software language and know within seconds whether it works, and so deploy it quickly. However, the code will have to go through several abstraction layers and generic hardware components. Although you can deploy the code quickly, you do not get the fastest possible outcome.
As an FPGA engineer, it may take two to three hours of compilation time before you know whether your adjustment will result in the outcome you want. However, you can increase performance at the cost of more engineering time. The day-to-day challenge you face is how to make the process as efficient as possible with the given trade-offs while pushing the boundaries of the FPGA technology.
Skills needed to be an FPGA engineer
Things change extremely rapidly in the trading world, and agility is the name of the game. Unsurprisingly, FPGA engineers tend to enjoy a challenge. To work as an FGPA engineer at a company like IMC, you have to be a great problem-solver, a quick learner and highly adaptable.
What makes IMC a great fit for an FPGA engineer?
IMC offers a great team dynamic. We are a smaller company than many larger technology or finance houses, and we operate very much like a family unit. This means that, as a graduate engineer, you’ll never be far from the action, and you’ll be able to make an impact from day one.
Another key difference is that you’ll get to see the final outcome of your work. If you come up with an idea, we’ll give you the chance to make it work. If it does, you’ll see the results put into practice in a matter of days, which is always a great feeling. If it doesn’t, you’ll get to find out why – so there’s an opportunity to learn and improve for next time.
Ultimately, working at IMC is about having skin in the game. You’ll be entrusted with making your own decisions. And you’ll be working side by side with super smart people who are open-minded and always interested in hearing your ideas. Market making is a technology-dependent process, and we’re all in this together.
Think you have what it takes to make a difference at a technology graduate at IMC? Check out our graduate opportunities page.
submitted by IMC_Trading to u/IMC_Trading [link] [comments]

The best DApps, which will likely lead the next phase.

The best DApps, which will likely lead the next phase.
Author: Gamals Ahmed, Business Ambassador

https://images.app.goo.gl/2c9rF5ZqfbjBzb2x6
One of the key themes in 2020 is the rise of decentralized financing (DeFi), a new type of financing that works on decentralized protocols and without the need for financial intermediaries. Lately, the number of DeFi apps has increased significantly, but many have not been seen or heard by many of us.
In this Article I will be building a list of the best DApps, which will likely lead the next phase. DeFi apps can be categorized into different subcategories such as:
  • Finance
  • Exchange
  • Insurance
  • Gambling
  • Social
And much more…
Note: Some of the projects in the report categorized into more than one section in the types of dApps.
The rise of DeFi Bitcoin (BTC) was the first implementation of decentralized financing. It enabled individuals to conduct financial transactions with other individuals without the need for a financial intermediary in the digital age. Bitcoin and similar cryptocurrencies were the first wave of DeFi. The second wave of DeFi was enabled by Ethereum blockchain which added another layer of programmability to the blockchain. Now, at the beginning of 2020, individuals and companies can borrow, lend, trade, invest, exchange and store crypto assets in an unreliable way. In 2020, we can expect the amount of money held in lending protocols to increase as long-term investors diversify into interest-bearing offers, especially if the market fails to rise towards the 2017/18 highs. On the other hand, active crypto traders are becoming increasingly interested in decentralized trading offers. The increasing level of money security offered by decentralized trading platforms should not only see an increase in trading of DApp users, but also in the number of non-custodial trading and exchange platforms available.
Lending: DeFi allows anyone to obtain or provide a loan without third party approval. The vast majority of lending products use common cryptocurrencies such as Ether ($ ETH) to secure outstanding loans through over-collateral. Thanks to the emergence of smart contracts, maintenance margins and interest rates can be programmed directly into a borrowing agreement with liquidations occurring automatically if the account balance falls below the specified collateral. The relative benefit gained from supplying different cryptocurrencies is different for the asset and the underlying platform used.

Compound

Source: https://images.app.goo.gl/SGttwo4JWadHTxYe7
Compound is a money market protocol on the Ethereum blockchain — allowing individuals, institutions, and applications to frictionlessly earn interest on or borrow cryptographic assets without having to negotiate with a counterparty or peer. Each market has a dynamic borrowing interest rate, which floats in real-time as market conditions adjust. Compound focuses on allowing borrowers to take out loans and lenders to provide loans by locking their crypto assets into the protocol. The interest rates paid and received by borrowers and lenders are determined by the supply and demand of each crypto asset. Interest rates are generated with every block mined. Loans can be paid back and locked assets can be withdrawn at any time. While DeFi may seem overwhelming complex to the average individual, Compound prides itself on building a product that is digestible for users of all backgrounds. Compound is a protocol on the Ethereum blockchain that establishes money markets, which are pools of assets with algorithmically derived interest rates, based on the supply and demand for the asset. Suppliers (and borrowers) of an asset interact directly with the protocol, earning (and paying) a floating interest rate, without having to negotiate terms such as maturity, interest rate, or collateral with a peer or counterparty. Built on top of that principle is cTokens, Compound’s native token that allows users to earn interest on their money while also being able to transfer, trade, and use that money in other applications. OVERVIEW ABOUT COMPOUND PROTOCOL Compound Finance is a San Francisco based company, which raised an $8.2 M seed round in May of 2018, and a $25M Series A round in November of 2019. Financing rounds were lead by industry giants including but not limited to Andressen Horowitz, Polychain Capital, Coinbase Ventures and Bain Capital Ventures, Compound Finance is a sector-leading lending protocol enabling users to lend and borrow popular cryptocurrencies like Ether, Dai and Tether. Compound leverages audited smart contracts responsible for the storage, management, and facilitation of all pooled capital. Users connect to Compound through web3 wallets like MetaMask with all positions being tracked using interest-earning tokens called cTokens.
Compound recently introduced a governance token — COMP. It holds no economic benefits and is solely used to vote on protocol proposals. The distribution of COMP has absolutely exceeded expectations on all fronts. Compound is now the leading DeFi protocol both in terms of Total Value Locked and in terms of COMP’s marketcap relative to other DeFi tokens. COMP was recently listed on Coinbase — the leading US cryptocurrency exchange and has seen strong interest from dozens of other exchanges including futures platforms like FTX. Compound’s new governance system is well underway, with close to close to 10 proposals being passed since it’s launch. What’s unique about COMP’s governance model is that tokenholders can delegate their tokens to an address of their choice. Only those who hold more than 1% of the supply can make new proposals. Besides earning interest on your crypto assets, which is a straightforward process of depositing crypto assets on the platform and receiving cTokens, you can also borrow crypto on Compound. Borrowing crypto assets has the added step of making sure the value of your collateral stays above a minimum amount relative to your loan. Compound and DeFi more broadly wants to help people have more access and control over the money they earn and save. While the project has had its criticisms, the long-term goal of Compound has always been to become fully decentralized over time. The Compound team currently manages the protocol, but they plan to eventually transfer all authority over to a Decentralized Autonomous Organization (DAO) governed by the Compound community. For following the project:
Website: https://compound.finance/
Medium: https://medium.com/compound-finance
Github: https://github.com/compound-finance/compound-protocol
DEXs: Decentralized exchanges allow users to switch their assets without the need to transfer custody of basic collateral. DEXs aim to provide unreliable and interoperable trading across a wide range of trading pairs.

Kyber


Source: https://images.app.goo.gl/sFCUhrgVwvs9ZJEP6
Kyber is a blockchain-based liquidity protocol that allows decentralized token swaps to be integrated into any application, enabling value exchange to be performed seamlessly between all parties in the ecosystem. Using this protocol, developers can build innovative payment flows and applications, including instant token swap services, ERC20 payments, and financial DApps helping to build a world where any token is usable anywhere. Kyber’s ecosystem is growing rapidly. In about a month, the team got an investment and partnered with some of the best projects. ParaFi Capital, a blockchain-focused investment company, has made a strategic purchase of KNC codes. The company will assist the DeFi project by qualifying new clients and improving professional market manufacture. The project’s recent partnerships seem impressive. Includes Chainlink, Chicago DeFi Alliance, and Digifox Wallet.
An important DeFi integration was also made with MakerDAO. KNC can now be used as a DAI warranty. The project has reached a milestone worth $ 1 billion of total turnover since its inception. More importantly, volume on an annual basis is moving and accelerating from $ 70 million in the first year to more than $ 600 million in 2020. Recently five million KNC (about 2.4% of total supply) were burned, improving Kyber’s supply and demand ratio. In July, the Kyber network witnessed a Katalyst upgrade that will improve governance, signature, delegation and structural improvements.
When Katalyst hits the main network, users will be able to either vote directly or delegate tokens to shareholder groups led by either companies like Stake Capital or community members. The KNC used to vote is burned, and in turn, voters get ETH as a reward. This setting creates a model for staking an uncommon contraction for the Kyber network. KyberDAO will facilitate chain governance, like many other projects based on Ethereum. An interesting partnership with xToken has been set up to help less-participating users stake out via xKNC. xKNC automatically makes specific voting decisions, making it easier for users to join and enjoy the return. The pool was created to draw BTC to Curve. Users who do this are eligible for returns in SNX, REN, CRV, and BAL. The more BTC lock on Synthetix, the more liquid it becomes, and the more attractive it is for traders. The project plans to continue expanding its products and move towards more decentralization. Synthetix futures are scheduled to appear on the exchange within a few months. The initial leverage is expected to be 10 to 20 times. The team aims to neglect its central oracle and replace it with one from Chainlink during the second stage of the migration. This will significantly increase the decentralization and flexibility of the platform. For following the project:
Website: https://kyber.network/
Medium: https://blog.kyber.network/
Github: https://github.com/kybernetwork
Derivatives: In traditional finance, a derivative represents a contract where the value is derived from an agreement based on the performance of an underlying asset. There are four main types of derivative contracts: futures, forwards, options, and swaps.

Synthetix

Source: https://images.app.goo.gl/1UsxQ7a3M5veb5sC7
Synthetix is a decentralized artificial asset issuance protocol based on Ethereum. These synthetic assets are guaranteed by the Synthetix Network (SNX) code which enables, upon conclusion of the contract, the release of Synths. This combined collateral model allows users to make transfers between Compound directly with the smart contract, avoiding the need for counterparties. This mechanism solves DEX’s liquidity and sliding issues. Synthetix currently supports artificial banknotes, cryptocurrencies (long and short) and commodities.
SNX holders are encouraged to share their tokens as part of their proportionate percentage of activity fees are paid on Synthetix.Exchange, based on their contribution to the network. It contains three DApp applications for trading, signature and analysis: Exchange (Synths at no cost). Mintr (SNX lock for tuning and fee collection). Synthetix Network Token is a great platform in the ethereum ecosystem that leverages blockchain technology to help bridge the gap between the often mysterious cryptocurrency world and the more realistic world of traditional assets. That is, on the Synthetix network, there are Synths, which are artificial assets that provide exposure to assets such as gold, bitcoin, US dollars, and various stocks such as Tesla (NASDAQ: TSLA) and Apple (NASDAQ: AAPL). The whole idea of these artificial assets is to create shared assets where users benefit from exposure to the assets, without actually owning the asset.
It is a very unique idea, and a promising project in the ethereum landscape. Since it helps bridge the gap between cryptocurrencies and traditional assets, it creates a level of familiarity and value that is often lost in the assets of other digital currencies. This will make Synthetix take his seat in the next stage. On June 15, BitGo announced support for SNX and on June 19, Synthetix announced via blog post that Synthetix, Curve, and Ren “collaborated to launch a new stimulus group to provide liquidity for premium bitcoin on Ethereum”, and said the goal was to “create the most liquid Ethereum — the BTC-based suite available to provide traders with the lowest slippage” In trade between sBTC, renBTC and WBTC. “ For following the project:
Website: https://www.synthetix.io/
Blog: https://blog.synthetix.io/
Github: https://github.com/Synthetixio
Wallets: Wallets are a crucial gateway for interacting with DeFi products. While they commonly vary in their underlying product and asset support, across the board we’ve seen drastic improvements in usability and access thanks to the growing DeFi narrative.

Argent


Source: https://images.app.goo.gl/mYPaWecFfwRqnUTx6
It is the startup for consumer game-changing financial technology, which makes decentralized web access safer and easier. The company has built a smart and easy-to-use mobile wallet for Ethereum, which gives users the ability to easily retrieve their encrypted currencies on the go.
Argent Benefits:
  • Only you control your assets
  • Explore DeFi with one click
  • Easily retrieve and close your wallet
  • The wallet pays gas for in-app features, for example Compound and Maker
The Argent crypto wallet simplifies the process without sacrificing security. It is a type of wallet that allows you to keep cryptographic keys while keeping things simple. The Argent wallet is secured by something called the Guardians. If you lose your phone (and your Argent wallet), just contact your guardians to confirm your identity. Then you can get all your money back on another device. It is a simple and intuitive method that can make cryptocurrency manipulation easier to do without experience. Argent is focused on the Ethereum blockchain and plans to support everything Ethereum has to offer. Of course, you can send and receive ETH. The startup wants to hide the complexity on this front, as it covers transaction fees (gas) for you and gives you usernames. This way, you don’t have to set a transaction fee to make sure it expires. Insurance cooperative Nexus Mutual and Argent Portfolio Provider are planning to offer a range of smart and insurance contracts to keep Argent user money safe from hackers. First, the smart contract is designed to prevent thieves from draining the wallet by temporarily freezing transfers above the daily spending limit for addresses not listed in the user’s whitelist. The user has 24 hours to cancel the frozen transfer — very similar to the bank’s intervention and prevent fraud on the card or similar suspicious activities in the account. By contrast, the default coding state is closer to criticism: once it disappears, it disappears. “We are thinking not only of crypto users but also new users — so the ultimate goal is to duplicate what they get from their bank,” said Itamar Lisuis, one of the founders of Argent. For following the project:
Website: https://www.argent.xyz/
Medium: https://medium.com/argenthq
Github: https://github.com/argentlabs/
Asset Management: With such a vast amount of DeFi products, it’s crucial that tools are in place to better track and manage assets. In line with the permissionless nature of the wider DeFi ecosystem, these assets management projects provide users with the ability to seamlessly track their balances across various tokens, products and services in an intuitive fashion.

InstaDapp

Source: https://images.app.goo.gl/VP9Xwih6VQ1Zmv2E9
It is a smart wallet for DeFi that allows users to seamlessly manage multiple DeFi applications to maximize returns across different protocols in a fraction of the time. With InstaDapp, users can take advantage of industry-leading projects like Compound, MakerDAO and Uniswap in one easy-to-use portal. Instadapp currently supports dapps MakerDAO and Compound DeFi, allowing users to add collateral, borrow, redeem and redeem their collateral on each dapp, as well as refinance debt positions between the two. In addition to its ease of use, InstaDapp also adds additional benefits and use cases for supported projects that are not already supported. The project focuses on making DeFi easier for non-technical users by maintaining a decentralized spirit while stripping many of the confusing terms that many products bring with them.
InstaDapp has launched a one-click and one-transaction solution that allows users to quadruple the COMP Codes they can earn from using quadruple borrowing and lending. A good timing feature for sure, but this kind of simplification is exactly why Instadapp was created. Its goal is to create a simple interface into multiple DeFi applications running on the Ethereum Blockchain and then automate complex interactions in a way that enables users to maximize their profits while reducing transactions and Ethereum gas charges. To use Instadapp you will need Ethereum wallet and you will also have to create what is called Instadapp smart wallet in which token you want to use. For following the project:
Website: https://instadapp.io/
Medium: https://medium.com/instadapp
Github: https://github.com/instadapp
Savings: There are a select few DeFi projects which offer unique and novel ways to earn a return by saving cryptocurrencies. This differs from lending as there is no borrower on the other side of the table.

Dharma

Source: https://images.app.goo.gl/4JhfFNxPfE9oxoqV6
Dharma is an easy-to-use layer above the compound protocol. It introduces new and non-technical users to transaction encryption and allows them to easily borrow or lend in DeFi markets and earn interest in stable currencies. You can start by simply using a debit card. Funds are kept in a non-portfolio portfolio, which constantly earns interest on all of your deposited assets. The value of Dharma’s DeFi lending experience is:
  • Easy entry.
  • Simple wallet.
  • High protection.
  • Depositing and withdrawing banknotes.
Dharma, the prominent DeFi cryptobank bank, has made it extremely easy to bring any Twitter user into the crypto world. Dharma users can send money from the Dharma app by searching for any Twitter handle, setting the required amount, and clicking on one button. The Twitter Dharma Bot account can send a unique notification with a link to download the Dharma mobile app. Senders are encouraged to retweet the notification to ensure that the receiver does not lose it.
To raise money, recipients simply download the Dharma app. After creating a Dharma account, users connect their Twitter account to receive access to the money sent. They can choose to transfer money to US dollars and withdraw to a bank account, or leave DAI in a Dharma account where it will earn interest like all Dharma deposits. The submitted DAI will gain interest even before the receiving user requests it while waiting for the claim. In her ad, Dharma demonstrated a number of ways in which the new social payments feature can be used, including tips for your favorite Twitter personalities, accepting payments for goods or services in a very clear way, charitable donations across borders or transfer payments. The Dharma app is available for both Android and iOS. Dharma and Compound
Dharma generates interest by DAI signing the Compound Protocol. Dharma also appeared in the news recently after the release of a specification outlining a Layer 2 expansion solution allowing the platform to expand to handle current transaction volume 10x, ensuring users can transfer their money quickly even in times of heavy congestion on the Ethereum network. Dharma is developing its “core” and “underwriting” contracts within the company. Underwriting contracts are open source and non-custodian, while each loan contract is closed source. This means that the receiving address contains nodes that interact with a script on a central Dharma server.For following the project:
Website: https://dharma.io/
Medium: https://medium.com/dharma-blog
Github: https://github.com/dharmaprotocol
Insurance: Decentralized insurance protocols allow users to take out policies on smart contracts, funds, or any other cryptocurrencies through pooled funds and reserves.

Nexus Mutual


Source: https://images.app.goo.gl/b7HwB8ifvTXwFhrh6
Nexus Mutual uses blockchain technology to return mutual values to insurance by creating consistent incentives with the smart contract symbol on the Ethereum blockchain. It is built on the Ethchaum blockchain and uses a modular system to aggregate smart Ethereum nodes, allowing to upgrade the system’s logical components without affecting other components.
The way Nexus works is members of the mutual association by purchasing NXM codes that allow them to participate in the decentralized independent organization (DAO). All decisions are voted on by members, who are motivated to pay real claims. It sees plenty of opportunities in a gradual transition of Ethereum to Eth 2.0, which is expected to start later this year. Eth 2.0 moves the network from the power-hungry Proof-of-Consensus (PoW) algorithm to Proof-of-Stake (PoS), a way to sign cryptocurrency in order to keep the network afloat. Having a steady return on signature from the Ether (ETH) can be somewhat compared to the way in which insurance companies invest in the real world the premiums they collect.
By setting a strong set of conditions for Nexus Mutual, anyone will be able to bring in and acquire a new form of risk for mutual coverage — assuming that members are willing to share NXM. With this design, the mutual discretion will be able to expand into much broader fields beyond smart contracts. In addition to defining multi-layered term agreements, Nexus Mutual also has some other advantages needed to achieve this visualization. For following the project:
Website: https://nexusmutual.io/
Medium: https://medium.com/nexus-mutual
Github: https://github.com/NexusMutual
Disclaimer: This report is a study of what is happening in the market at the present time and we do not support or promote any of the mentioned projects or cryptocurrencies. Any descriptions of the jobs and services provided are for information only. We are not responsible for any loss of funds or other damages caused.
Resources:
https://compound.finance/
https://kyber.network/
https://instadapp.io/
https://www.synthetix.io/
https://www.argent.xyz/
https://dharma.io/
https://nexusmutual.io/
submitted by CoinEx_Institution to u/CoinEx_Institution [link] [comments]

DFINITY Research Report

DFINITY Research Report
Author: Gamals Ahmed, CoinEx Business Ambassador
ABSTRACT
The DFINITY blockchain computer provides a secure, performant and flexible consensus mechanism. At its core, DFINITY contains a decentralized randomness beacon, which acts as a verifiable random function (VRF) that produces a stream of outputs over time. The novel technique behind the beacon relies on the existence of a unique-deterministic, non-interactive, DKG-friendly threshold signatures scheme. The only known examples of such a scheme are pairing-based and derived from BLS.
The DFINITY blockchain is layered on top of the DFINITY beacon and uses the beacon as its source of randomness for leader selection and leader ranking. A “weight” is attributed to a chain based on the ranks of the leaders who propose the blocks in the chain, and that weight is used to select between competing chains. The DFINITY blockchain is layered on top of the DFINITY beacon and uses the beacon as its source of randomness for leader selection and leader ranking blockchain is further hardened by a notarization process which dramatically improves the time to finality and eliminates the nothing-at-stake and selfish mining attacks.
DFINITY consensus algorithm is made to scale through continuous quorum selections driven by the random beacon. In practice, DFINITY achieves block times of a few seconds and transaction finality after only two confirmations. The system gracefully handles temporary losses of network synchrony including network splits, while it is provably secure under synchrony.

1.INTRODUCTION

DFINITY is building a new kind of public decentralized cloud computing resource. The company’s platform uses blockchain technology which is aimed at building a new kind of public decentralized cloud computing resource with unlimited capacity, performance and algorithmic governance shared by the world, with the capability to power autonomous self-updating software systems, enabling organizations to design and deploy custom-tailored cloud computing projects, thereby reducing enterprise IT system costs by 90%.
DFINITY aims to explore new territory and prove that the blockchain opportunity is far broader and deeper than anyone has hitherto realized, unlocking the opportunity with powerful new crypto.
Although a standalone project, DFINITY is not maximalist minded and is a great supporter of Ethereum.
The DFINITY blockchain computer provides a secure, performant and flexible consensus mechanism. At its core, DFINITY contains a decentralized randomness beacon, which acts as a verifiable random function (VRF) that produces a stream of outputs over time. The novel technique behind the beacon relies on the existence of a unique-deterministic, non-interactive, DKG-friendly threshold signatures scheme. The only known examples of such a scheme are pairing-based and derived from BLS.
DFINITY’s consensus mechanism has four layers: notary (provides fast finality guarantees to clients and external observers), blockchain (builds a blockchain from validated transactions via the Probabilistic Slot Protocol driven by the random beacon), random beacon (provides the source of randomness for all higher layers like smart contract applications), and identity (provides a registry of all clients).
DFINITY’s consensus mechanism has four layers

Figure1: DFINITY’s consensus mechanism layers
1. Identity layer:
Active participants in the DFINITY Network are called clients. Where clients are registered with permanent identities under a pseudonym. Moreover, DFINITY supports open membership by providing a protocol for registering new clients by depositing a stake with an insurance period. This is the responsibility of the first layer.
2. Random Beacon layer:
Provides the source of randomness (VRF) for all higher layers including ap- plications (smart contracts). The random beacon in the second layer is an unbiasable, verifiable random function (VRF) that is produced jointly by registered clients. Each random output of the VRF is unpredictable by anyone until just before it becomes avail- able to everyone. This is a key technology of the DFINITY system, which relies on a threshold signature scheme with the properties of uniqueness and non-interactivity.

https://preview.redd.it/hkcf53ic05e51.jpg?width=441&format=pjpg&auto=webp&s=44d45c9602ee630705ce92902b8a8379201d8111
3. Blockchain layer:
The third layer deploys the “probabilistic slot protocol” (PSP). This protocol ranks the clients for each height of the chain, in an order that is derived determin- istically from the unbiased output of the random beacon for that height. A weight is then assigned to block proposals based on the proposer’s rank such that blocks from clients at the top of the list receive a higher weight. Forks are resolved by giving favor to the “heaviest” chain in terms of accumulated block weight — quite sim- ilar to how traditional proof-of-work consensus is based on the highest accumulated amount of work.
The first advantage of the PSP protocol is that the ranking is available instantaneously, which allows for a predictable, constant block time. The second advantage is that there is always a single highest-ranked client, which allows for a homogenous network bandwidth utilization. Instead, a race between clients would favor a usage in bursts.
4. Notarization layer:
Provides fast finality guarantees to clients and external observers. DFINITY deploys the novel technique of block notarization in its fourth layer to speed up finality. A notarization is a threshold signature under a block created jointly by registered clients. Only notarized blocks can be included in a chain. Of all RSA-based alternatives exist but suffer from an impracticality of setting up the thresh- old keys without a trusted dealer.
DFINITY achieves its high speed and short block times exactly because notarization is not full consensus.
DFINITY does not suffer from selfish mining attack or a problem nothing at stake because the authentication step is impossible for the opponent to build and maintain a series of linked and trusted blocks in secret.
DFINITY’s consensus is designed to operate on a network of millions of clients. To en- able scalability to this extent, the random beacon and notarization protocols are designed such as that they can be safely and efficiently delegated to a committee

1.1 OVERVIEW ABOUT DFINITY

DFINITY is a blockchain-based cloud-computing project that aims to develop an open, public network, referred to as the “internet computer,” to host the next generation of software and data. and it is a decentralized and non-proprietary network to run the next generation of mega-applications. It dubbed this public network “Cloud 3.0”.
DFINITY is a third generation virtual blockchain network that sets out to function as an “intelligent decentralised cloud,”¹ strongly focused on delivering a viable corporate cloud solution. The DFINITY project is overseen, supported and promoted by DFINITY Stiftung a not-for-profit foundation based in Zug, Switzerland.
DFINITY is a decentralized network design whose protocols generate a reliable “virtual blockchain computer” running on top of a peer-to-peer network upon which software can be installed and can operate in the tamperproof mode of smart contracts.
DFINITY introduces algorithmic governance in the form of a “Blockchain Nervous System” that can protect users from attacks and help restart broken systems, dynamically optimize network security and efficiency, upgrade the protocol and mitigate misuse of the platform, for example by those wishing to run illegal or immoral systems.
DFINITY is an Ethereum-compatible smart contract platform that is implementing some revolutionary ideas to address blockchain performance, scaling, and governance. Whereas
DFINITY could pose a credible threat to Ethereum’s extinction, the project is pursuing a coevolutionary strategy by contributing funding and effort to Ethereum projects and freely offering their technology to Ethereum for adoption. DFINITY has labeled itself Ethereum’s “crazy sister” to express it’s close genetic resemblance to Ethereum, differentiated by its obsession with performance and neuron-inspired governance model.
Dfinity raised $61 million from Andreesen Horowitz and Polychain Capital in a February 2018 funding round. At the time, Dfinity said it wanted to create an “internet computer” to cut the costs of running cloud-based business applications. A further $102 million funding round in August 2018 brought the project’s total funding to $195 million.
In May 2018, Dfinity announced plans to distribute around $35 million worth of Dfinity tokens in an airdrop. It was part of the company’s plan to create a “Cloud 3.0.” Because of regulatory concerns, none of the tokens went to US residents.
DFINITY be broadening and strengthening the EVM ecosystem by giving applications a choice of platforms with different characteristics. However, if DFINITY succeeds in delivering a fully EVM-compatible smart contract platform with higher transaction throughput, faster confirmation times, and governance mechanisms that can resolve public disputes without causing community splits, then it will represent a clearly superior choice for deploying new applications and, as its network effects grow, an attractive place to bring existing ones. Of course the challenge for DFINITY will be to deliver on these promises while meeting the security demands of a public chain with significant value at risk.

1.1.1 DFINITY FUTURE

  • DFINITY aims to explore new blockchain territory related to the original goals of the Ethereum project and is sometimes considered “Ethereum’s crazy sister.”
  • DFINITY is developing blockchain-based infrastructure to support a new style of the internet (akin to Ethereum’s “World Computer”), one in which the internet itself will support software applications and data rather than various cloud hosting providers.
  • The project suggests this reinvented software platform can simplify the development of new software systems, reduce the human capital needed to maintain and secure data, and preserve user data privacy.
  • Dfinity aims to reduce the costs of cloud services by creating a decentralized “internet computer” which may launch in 2020
  • Dfinity claims transactions on its network are finalized in 3–5 seconds, compared to 1 hour for Bitcoin and 10 minutes for Ethereum.

1.1.2 DFINITY’S VISION

DFINITY’s vision is its new internet infrastructure can support a wide variety of end-user and enterprise applications. Social media, messaging, search, storage, and peer-to-peer Internet interactions are all examples of functionalities that DFINITY plans to host atop its public Web 3.0 cloud-like computing resource. In order to provide the transaction and data capacity necessary to support this ambitious vision, DFINITY features a unique consensus model (dubbed Threshold Relay) and algorithmic governance via its Blockchain Nervous System (BNS) — sometimes also referred to as the Network Nervous System or NNS.

1.2 DFINITY COMMUNITY

The DFINITY community brings people and organizations together to learn and collaborate on products that help steward the next-generation of internet software and services. The Internet Computer allows developers to take on the monopolization of the internet, and return the internet back to its free and open roots. We’re committed to connecting those who believe the same through our events, content, and discussions.

https://preview.redd.it/0zv64fzf05e51.png?width=637&format=png&auto=webp&s=e2b17365fae3c679a32431062d8e3c00a57673cf

1.3 DFINITY ROADMAP (TIMELINE) February 15, 2017

February 15, 2017
Ethereum based community seed round raises 4M Swiss francs (CHF)
The DFINITY Stiftung, a not-for-profit foundation entity based in Zug, Switzerland, raised the round. The foundation held $10M of assets as of April 2017.
February 8, 2018
Dfinity announces a $61M fundraising round led by Polychain Capital and Andreessen Horowitz
The round $61M round led by Polychain Capital and Andreessen Horowitz, along with an DFINITY Ecosystem Venture Fund which will be used to support projects developing on the DFINITY platform, and an Ethereum based raise in 2017 brings the total funding for the project over $100 million. This is the first cryptocurrency token that Andressen Horowitz has invested in, led by Chris Dixon.
August 2018
Dfinity raises a $102,000,000 venture round from Multicoin Capital, Village Global, Aspect Ventures, Andreessen Horowitz, Polychain Capital, Scalar Capital, Amino Capital and SV Angel.
January 23, 2020
Dfinity launches an open source platform aimed at the social networking giants

2.DFINITY TECHNOLOGY

Dfinity is building what it calls the internet computer, a decentralized technology spread across a network of independent data centers that allows software to run anywhere on the internet rather than in server farms that are increasingly controlled by large firms, such as Amazon Web Services or Google Cloud. This week Dfinity is releasing its software to third-party developers, who it hopes will start making the internet computer’s killer apps. It is planning a public release later this year.
At its core, the DFINITY consensus mechanism is a variation of the Proof of Stake (PoS) model, but offers an alternative to traditional Proof of Work (PoW) and delegated PoS (dPoS) networks. Threshold Relay intends to strike a balance between inefficiencies of decentralized PoW blockchains (generally characterized by slow block times) and the less robust game theory involved in vote delegation (as seen in dPoS blockchains). In DFINITY, a committee of “miners” is randomly selected to add a new block to the chain. An individual miner’s probability of being elected to the committee proposing and computing the next block (or blocks) is proportional to the number of dfinities the miner has staked on the network. Further, a “weight” is attributed to a DFINITY chain based on the ranks of the miners who propose blocks in the chain, and that weight is used to choose between competing chains (i.e. resolve chain forks).
A decentralized random beacon manages the random selection process of temporary block producers. This beacon is a Variable Random Function (VRF), which is a pseudo-random function that provides publicly verifiable proofs of its outputs’ correctness. A core component of the random beacon is the use of Boneh-Lynn-Shacham (BLS) signatures. By leveraging the BLS signature scheme, the DFINITY protocol ensures no actor in the network can determine the outcome of the next random assignment.
Dfinity is introducing a new standard, which it calls the internet computer protocol (ICP). These new rules let developers move software around the internet as well as data. All software needs computers to run on, but with ICP the computers could be anywhere. Instead of running on a dedicated server in Google Cloud, for example, the software would have no fixed physical address, moving between servers owned by independent data centers around the world. “Conceptually, it’s kind of running everywhere,” says Dfinity engineering manager Stanley Jones.
DFINITY also features a native programming language, called ActorScript (name may be subject to change), and a virtual machine for smart contract creation and execution. The new smart contract language is intended to simplify the management of application state for programmers via an orthogonal persistence environment (which means active programs are
not required to retrieve or save their state). All ActorScript contracts are eventually compiled down to WebAssembly instructions so the DFINITY virtual machine layer can execute the logic of applications running on the network. The advantage of using the WebAssembly standard is that all major browsers support it and a variety of programming languages can compile down to Wasm (not just ActorScript).
Dfinity is moving fast. Recently, Dfinity showed off a TikTok clone called CanCan. In January it demoed a LinkedIn-alike called LinkedUp. Neither app is being made public, but they make a convincing case that apps made for the internet computer can rival the real things.

2.1 DFINITY CORE APPLICATIONS

The DFINITY cloud has two core applications:
  1. Enabling the re-engineering of business: DFINITY ambitiously aims to facilitate the re-engineering of mass-market services (such as Web Search, Ridesharing Services, Messaging Services, Social Media, Supply Chain, etc) into open source businesses that leverage autonomous software and decentralised governance systems to operate and update themselves more efficiently.
  2. Enable the re-engineering of enterprise IT systems to reduce costs: DFINITY seeks to re-engineer enterprise IT systems to take advantage of the unique properties that blockchain computer networks provide.
At present, computation on blockchain-based computer networks is far more expensive than traditional, centralised solutions (Amazon Web Services, Microsoft Azure, Google Cloud Platform, etc). Despite increasing computational cost, DFINITY intends to lower net costs “by 90% or more” through reducing the human capital cost associated with sustaining and supporting these services.
Whilst conceptually similar to Ethereum, DFINITY employs original and new cryptography methods and protocols (crypto:3) at the network level, in concert with AI and network-fuelled systemic governance (Blockchain Nervous System — BNS) to facilitate Corporate adoption.
DFINITY recognises that different users value different properties and sees itself as more of a fully compatible extension of the Ethereum ecosystem rather than a competitor of the Ethereum network.
In the future, DFINITY hopes that much of their “new crypto might be used within the Ethereum network and are also working hard on shared technology components.”
As the DFINITY project develops over time, the DFINITY Stiftung foundation intends to steadily increase the BNS’ decision-making responsibilities over time, eventually resulting in the dissolution of its own involvement entirely, once the BNS is sufficiently sophisticated.
DFINITY consensus mechanism is a heavily optimized proof of stake (PoS) model. It places a strong emphasis on transaction finality through implementing a Threshold Relay technique in conjunction with the BLS signature scheme and a notarization method to address many of the problems associated with PoS consensus.

2.2 THRESHOLD RELAY

As a public cloud computing resource, DFINITY targets business applications by substantially reducing cloud computing costs for IT systems. They aim to achieve this with a highly scalable and powerful network with potentially unlimited capacity. The DFINITY platform is chalk full of innovative designs and features like their Blockchain Nervous System (BNS) for algorithmic governance.
One of the primary components of the platform is its novel Threshold Relay Consensus model from which randomness is produced, driving the other systems that the network depends on to operate effectively. The consensus system was first designed for a permissioned participation model but can be paired with any method of Sybil resistance for an open participation model.
“The Threshold Relay is the mechanism by which Dfinity randomly samples replicas into groups, sets the groups (committees) up for threshold operation, chooses the current committee, and relays from one committee to the next is called the threshold relay.”
Threshold Relay consists of four layers (As mentioned previously):
  1. Notary layer, which provides fast finality guarantees to clients and external observers and eliminates nothing-at-stake and selfish mining attacks, providing Sybil attack resistance.
  2. Blockchain layer that builds a blockchain from validated transactions via the Probabilistic Slot Protocol driven by the random beacon.
  3. Random beacon, which as previously covered, provides the source of randomness for all higher layers like the blockchain layer smart contract applications.
  4. Identity layer that provides a registry of all clients.

2.2.1 HOW DOES THRESHOLD RELAY WORK?

Threshold Relay produces an endogenous random beacon, and each new value defines random group(s) of clients that may independently try and form into a “threshold group”. The composition of each group is entirely random such that they can intersect and clients can be presented in multiple groups. In DFINITY, each group is comprised of 400 members. When a group is defined, the members attempt to set up a BLS threshold signature system using a distributed key generation protocol. If they are successful within some fixed number of blocks, they then register the public key (“identity”) created for their group on the global blockchain using a special transaction, such that it will become part of the set of active groups in a following “epoch”. The network begins at “genesis” with some number of predefined groups, one of which is nominated to create a signature on some default value. Such signatures are random values — if they were not then the group’s signatures on messages would be predictable and the threshold signature system insecure — and each random value produced thus is used to select a random successor group. This next group then signs the previous random value to produce a new random value and select another group, relaying between groups ad infinitum and producing a sequence of random values.
In a cryptographic threshold signature system a group can produce a signature on a message upon the cooperation of some minimum threshold of its members, which is set to 51% in the DFINITY network. To produce the threshold signature, group members sign the message
individually (here the preceding group’s threshold signature) creating individual “signature shares” that are then broadcast to other group members. The group threshold signature can be constructed upon combination of a sufficient threshold of signature shares. So for example, if the group size is 400, if the threshold is set at 201 any client that collects that many shares will be able to construct the group’s signature on the message. Other group members can validate each signature share, and any client using the group’s public key can validate the single group threshold signature produced by combining them. The magic of the BLS scheme is that it is “unique and deterministic” meaning that from whatever subset of group members the required number of signature shares are collected, the single threshold signature created is always the same and only a single correct value is possible.
Consequently, the sequence of random values produced is entirely deterministic and unmanipulable, and signatures generated by relaying between groups produces a Verifiable Random Function, or VRF. Although the sequence of random values is pre-determined given some set of participating groups, each new random value can only be produced upon the minimal agreement of a threshold of the current group. Conversely, in order for relaying to stall because a random number was not produced, the number of correct processes must be below the threshold. Thresholds are configured so that this is extremely unlikely. For example, if the group size is set to 400, and the threshold is 201, 200 or more of the processes must become faulty to prevent production. If there are 10,000 processes in the network, of which 3,000 are faulty, the probability this will occur is less than 10e-17.

2.3 DFINITY TOKEN

The DFINITY blockchain also supports a native token, called dfinities (DFN), which perform multiple roles within the network, including:
  1. Fuel for deploying and running smart contracts.
  2. Security deposits (i.e. staking) that enable participation in the BNS governance system.
  3. Security deposits that allow client software or private DFINITY cloud networks to connect to the public network.
Although dfinities will end up being assigned a value by the market, the DFINITY team does not intend for DFN to act as a currency. Instead, the project has envisioned PHI, a “next-generation” crypto-fiat scheme, to act as a stable medium of exchange within the DFINITY ecosystem.
Neuron operators can earn Dfinities by participating in network-wide votes, which could be concerning protocol upgrades, a new economic policy, etc. DFN rewards for participating in the governance system are proportional to the number of tokens staked inside a neuron.

2.4 SCALABILITY

DFINITY is constantly developing with a structure that separates consensus, validation, and storage into separate layers. The storage layer is divided into multiple strings, each of which is responsible for processing transactions that occur in the fragment state. The verification layer is responsible for combining hashes of all fragments in a Merkle-like structure that results in a global state fractionation that is stored in blocks in the top-level chain.

2.5 DFINITY CONSENSUS ALGORITHM

The single most important aspect of the user experience is certainly the time required before a transaction becomes final. This is not solved by a short block time alone — Dfinity’s team also had to reduce the number of confirmations required to a small constant. DFINITY moreover had to provide a provably secure proof-of-stake algorithm that scales to millions of active participants without compromising any bit on decentralization.
Dfinity soon realized that the key to scalability lay in having an unmanipulable source of randomness available. Hence they built a scalable decentralized random beacon, based on what they call the Threshold Relay technique, right into the foundation of the protocol. This strong foundation drives a scalable and fast consensus layer: On top of the beacon runs a blockchain which utilizes notarization by threshold groups to achieve near-instant finality. Details can be found in the overview paper that we are releasing today.
The roots of the DFINITY consensus mechanism date back to 2014 when thair Chief Scientist, Dominic Williams, started to look for more efficient ways to drive large consensus networks. Since then, much research has gone into the protocol and it took several iterations to reach its current design.
For any practical consensus system the difficulty lies in navigating the tight terrain that one is given between the boundaries imposed by theoretical impossibility-results and practical performance limitations.
The first key milestone was the novel Threshold Relay technique for decentralized, deterministic randomness, which is made possible by certain unique characteristics of the BLS signature system. The next breakthrough was the notarization technique, which allows DFINITY consensus to solve the traditional problems that come with proof-of-stake systems. Getting the security proofs sound was the final step before publication.
DFINITY consensus has made the proper trade-offs between the practical side (realistic threat models and security assumptions) and the theoretical side (provable security). Out came a flexible, tunable algorithm, which we expect will establish itself as the best performing proof-of-stake algorithm. In particular, having the built-in random beacon will prove to be indispensable when building out sharding and scalable validation techniques.

2.6 LINKEDUP

The startup has rather cheekily called this “an open version of LinkedIn,” the Microsoft-owned social network for professionals. Unlike LinkedIn, LinkedUp, which runs on any browser, is not owned or controlled by a corporate entity.
LinkedUp is built on Dfinity’s so-called Internet Computer, its name for the platform it is building to distribute the next generation of software and open internet services.
The software is hosted directly on the internet on a Switzerland-based independent data center, but in the concept of the Internet Computer, it could be hosted at your house or mine. The compute power to run the application LinkedUp, in this case — is coming not from Amazon AWS, Google Cloud or Microsoft Azure, but is instead based on the distributed architecture that Dfinity is building.
Specifically, Dfinity notes that when enterprises and developers run their web apps and enterprise systems on the Internet Computer, the content is decentralized across a minimum of four or a maximum of an unlimited number of nodes in Dfinity’s global network of independent data centers.
Dfinity is an open source for LinkedUp to developers for creating other types of open internet services on the architecture it has built.
“Open Social Network for Professional Profiles” suggests that on Dfinity model one can create “Open WhatsApp”, “Open eBay”, “Open Salesforce” or “Open Facebook”.
The tools include a Canister Software Developer Kit and a simple programming language called Motoko that is optimized for Dfinity’s Internet Computer.
“The Internet Computer is conceived as an alternative to the $3.8 trillion legacy IT stack, and empowers the next generation of developers to build a new breed of tamper-proof enterprise software systems and open internet services. We are democratizing software development,” Williams said. “The Bronze release of the Internet Computer provides developers and enterprises a glimpse into the infinite possibilities of building on the Internet Computer — which also reflects the strength of the Dfinity team we have built so far.”
Dfinity says its “Internet Computer Protocol” allows for a new type of software called autonomous software, which can guarantee permanent APIs that cannot be revoked. When all these open internet services (e.g. open versions of WhatsApp, Facebook, eBay, Salesforce, etc.) are combined with other open software and services it creates “mutual network effects” where everyone benefits.
On 1 November, DFINITY has released 13 new public versions of the SDK, to our second major milestone [at WEF Davos] of demoing a decentralized web app called LinkedUp on the Internet Computer. Subsequent milestones towards the public launch of the Internet Computer will involve:
  1. On boarding a global network of independent data centers.
  2. Fully tested economic system.
  3. Fully tested Network Nervous Systems for configuration and upgrades

2.7 WHAT IS MOTOKO?

Motoko is a new software language being developed by the DFINITY Foundation, with an accompanying SDK, that is designed to help the broadest possible audience of developers create reliable and maintainable websites, enterprise systems and internet services on the Internet Computer with ease. By developing the Motoko language, the DFINITY Foundation will ensure that a language that is highly optimized for the new environment is available. However, the Internet Computer can support any number of different software frameworks, and the DFINITY Foundation is also working on SDKs that support the Rust and C languages. Eventually, it is expected there will be many different SDKs that target the Internet Computer.
Full article
submitted by CoinEx_Institution to u/CoinEx_Institution [link] [comments]

Algorithmic Trading: The Basics (Part 1) - YouTube Trading Futures & Bitcoin - Configure MD Trader then save ... Trading Futures & Bitcoin - Add algo logic to keep track ... Trading Futures & Bitcoin - Launch multiple instances of ... ALGORITHMIC CRYPTOCURRENCY TRADING TUTORIAL  CRIX EXCHANGE

For trading situations caching can be extremely beneficial. For instance, the current state of a strategy portfolio can be stored in a cache until it is rebalanced, such that the list doesn't need to be regenerated upon each loop of the trading algorithm. Such regeneration is likely to be a high CPU or disk I/O operation. Use commas to separate multiple email addresses The Full Nerd Awards: Best PC Hardware of 2017 The Full Nerd Ep. 36 Bitcoins are all the buzz. The virtual currency is riding a rollercoaster of speculation, rising exponentially in value and reaching a high of $260 this Wednesday before plummeting to $130. Whats more, Usually, Bitcoin trading bots are connected directly to Bitcoin exchanges. BTC Robot is different in a way that it is connected to a broker account, where Bitcoin trading is available as a tradable instrument. Note in this case you are not actually trading with Bitcoin directly, only with a CFD contract, which mimics the price of the underlying instrument, in this case, Bitcoin. Cryptocurrency trading bots and trading algorithms variety. There currently exists a vast array of cryptocurrencies in the market. Bitcoin, the first decentralized digital currency, remains the most popular and expensive cryptocurrency to date. Consequently, it’s no surprise that a majority of people are trading bitcoin as a way to generate ... The hash algorithm used in bitcoin is sha256, which is one of the secure hash algorithm (SHA-1, sha-224, sha-384, sha-512 and other variants). Sha is designed by the National Security Agency (NSA) and released by the National Institute of standards and Technology (NIST). It is mainly applicable to digital signature standard Digital signature algorithm (DSA) defined in standard DSS.

[index] [49432] [3129] [45732] [35917] [8041] [43911] [38499] [46712] [25025] [24072]

Algorithmic Trading: The Basics (Part 1) - YouTube

In this video we explain in detail how you can create, backtest and deploy your own automated trading algorithm in no time on the CRIX platform. Completely new to programming? No problem! Utilise ... Please subscribe to this channel and click the bell for updates. Include Bid and Ask Order Count metrics in algo logic for the precise number of orders in th... Please subscribe to this channel and click the bell for updates. Configure MD Trader and save the settings as default so they’ll be present in future instanc... Please subscribe to this channel and click the bell for updates. Quickly launch multiple instances of the same algo across different accounts with the Autotr... Please subscribe to this channel and click the bell for updates. Use the State block to direct a downstream message when one of a collection of possibilities...

#