Bitcoin and Cryptocurrency Technologies: A Comprehensive ...

Echoes of the Past: Recovering Blockchain Metrics From Merged Mining

Cryptology ePrint Archive: Report 2018/1134
Date: 2018-11-22
Author(s): Nicholas Stifter, Philipp Schindler, Aljosha Judmayer, Alexei Zamyatin, Andreas Kern, Edgar Weippl

Link to Paper


Abstract
So far, the topic of merged mining has mainly been considered in a security context, covering issues such as mining power centralization or crosschain attack scenarios. In this work we show that key information for determining blockchain metrics such as the fork rate can be recovered through data extracted from merge mined cryptocurrencies. Specifically, we reconstruct a long-ranging view of forks and stale blocks in Bitcoin from its merge mined child chains, and compare our results to previous findings that were derived from live measurements. Thereby, we show that live monitoring alone is not sufficient to capture a large majority of these events, as we are able to identify a non-negligible portion of stale blocks that were previously unaccounted for. Their authenticity is ensured by cryptographic evidence regarding both, their position in the respective blockchain, as well as the Proof-of-Work difficulty.
Furthermore, by applying this new technique to Litecoin and its child cryptocur rencies, we are able to provide the first extensive view and lower bound on the stale block and fork rate in the Litecoin network. Finally, we outline that a recovery of other important metrics and blockchain characteristics through merged mining may also be possible.

References
  1. C. Decker and R. Wattenhofer, “Information propagation in the bitcoin network,” in Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on. IEEE, 2013, pp. 1–10. [Online]. Available: http://diyhpl.us/∼bryan/papers2/bitcoin/Information% 20propagation%20in%20the%20Bitcoin%20network.pdf
  2. A. Gervais, G. O. Karame, K. Wust, V. Glykantzis, H. Ritzdo rf, and S. Capkun, “On the ¨ security and performance of proof of work blockchains,” in Proceedings of the 2016 ACM SIGSAC. ACM, 2016, pp. 3–16.
  3. A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer, “Decentralization in bitcoin and ethereum networks,” in Proceedings of the 22nd International Conference on Financial Cryptography and Data Security (FC). Springer, 2018. [Online]. Available: http://fc18.ifca.ai/preproceedings/75.pdf
  4. I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in Financial Cryptography and Data Security. Springer, 2014, pp. 436–454. [Online]. Available: http://arxiv.org/pdf/1311.0243
  5. K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generalizing selfish mining and combining with an eclipse attack,” in 1st IEEE European Symposium on Security and Privacy, 2016. IEEE, 2016. [Online]. Available: http://eprint.iacr.org/2015/796.pdf
  6. A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining strategies in bitcoin,” http://arxiv.org/pdf/1507.06183.pdf, 2015, accessed: 2016-08-22. [Online]. Available: http://arxiv.org/pdf/1507.06183.pdf
  7. J. Bonneau, “Why buy when you can rent? bribery attacks on bitcoin consensus,” in BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and Blockchain Research, February 2016. [Online]. Available: http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf
  8. K. Liao and J. Katz, “Incentivizing blockchain forks via whale transactions,” in International Conference on Financial Cryptography and Data Security. Springer, 2017, pp. 264–279. [Online]. Available: http://www.cs.umd.edu/∼jkatz/papers/whale-txs.pdf
  9. P. McCorry, A. Hicks, and S. Meiklejohn, “Smart contracts for bribing miners,” in 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018. [Online]. Available: http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
  10. A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knottebelt, “(Short Paper) A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice,” in 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018. [Online]. Available: https://eprint.iacr.org/2018/087.pdf
  11. Blockchain.com, “Blockchain.com orphaned blocks,” https://www.blockchain.com/btc/orphaned-blocks, Blockchain.com, accessed: 2018-09-25.
  12. BitcoinChain.com, “Bitcoinchain bitcoin block explorer,” https://bitcoinchain.com/blockexplorer, BitcoinChain.com, accessed: 2018-09-25.
  13. ChainQuery.com, “A web based interface to the bitcoin api json-rpc,” http://chainquery.com/bitcoin-api, ChainQuery.com, accessed: 2018-09-25.
  14. L. Project, “Litecoin,” https://litecoin.org/, accessed: 2016-03-29.
  15. Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction processing. fast money grows on trees, not chains,” p. 881, 2013. [Online]. Available: http://eprint.iacr.org/2013/881.pdf
  16. A. Miller and L. JJ, “Anonymous byzantine consensus from moderately-hard puzzles: A model for bitcoin,” https://socrates1024.s3.amazonaws.com/consensus.pdf, 2014, accessed: 2016-03-09. [Online]. Available: https://socrates1024.s3.amazonaws.com/consensus.pdf
  17. J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis and applications,” in Advances in Cryptology-EUROCRYPT 2015. Springer, 2015, pp. 281–310. [Online]. Available: http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin765.pdf
  18. R. Pass and E. Shi, “Fruitchains: A fair blockchain,” http://eprint.iacr.org/2016/916.pdf, 2016, accessed: 2016-11-08. [Online]. Available: http://eprint.iacr.org/2016/916.pdf
  19. R. Pass, L. Seeman, and a. shelat, “Analysis of the blockchain protocol in asynchronous networks,” http://eprint.iacr.org/2016/454.pdf, 2016, accessed: 2016-08-01. [Online]. Available: http://eprint.iacr.org/2016/454.pdf
  20. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi, and E. Gun, “On scaling decentralized blockchains,” in ¨ 3rd Workshop on Bitcoin and Blockchain Research, Financial Cryptography 16, 2016. [Online]. Available: http://www.tik.ee.ethz.ch/file/74bc987e6ab4a8478c04950616612f69/main.pdf
  21. A. Kiayias and G. Panagiotakos, “On trees, chains and fast transactions in the blockchain.” http://eprint.iacr.org/2016/545.pdf, 2016, accessed: 2017-02-06. [Online]. Available: http://eprint.iacr.org/2016/545.pdf
  22. Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and scalable cryptocurrency protocol,” Cryptology ePrint Archive, Report 2016/1159, 2016, accessed: 2017-02-20. [Online]. Available: http://eprint.iacr.org/2016/1159.pdf
  23. Y. Sompolinsky and A. Zohar, “Phantom: A scalable blockdag protocol,” Cryptology ePrint Archive, Report 2018/104, 2018, accessed:2018-01-31. [Online]. Available: https://eprint.iacr.org/2018/104.pdf
  24. Bitcoin community, “Bitcoin-core source code,” https://github.com/bitcoin/bitcoin, accessed: 2018-09-25.
  25. A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and B. Bhattacharjee, “Discovering bitcoin’s public topology and influential nodes,” http://cs.umd.edu/projects/coinscope/coinscope.pdf, May 2015, accsessed: 2016-03-09. [Online]. Available: http://cs.umd.edu/projects/coinscope/coinscope.pdf
  26. chainz.cryptoid.info/, “Chainz blockchain explorers,” chainz.cryptoid.info/, chainz.cryptoid.info/, accessed: 2018-09-25.
  27. Narayanan, Arvind and Bonneau, Joseph and Felten, Edward and Miller, Andrew and Goldfeder, Steven, “Bitcoin and cryptocurrency technologies,” http://bitcoinbook.cs.princeton.edu/, 2016, accessed: 2016-03-29. [Online]. Available: https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton bitcoin book.pdf
  28. A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl, “Merged mining: Curse or cure?” in CBT’17: Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, Sep 2017. [Online]. Available: https://eprint.iacr.org/2017/791.pdf
  29. M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” in Secure Information Networks. Springer, 1999, pp. 258–272. [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-0-387-35568-9 18.pdf
  30. A. Judmayer, N. Stifter, K. Krombholz, and E. Weippl, “Blocks and chains: Introduction to bitcoin, cryptocurrencies, and their consensus mechanisms,” Synthesis Lectures on Information Security, Privacy, and Trust, 2017.
  31. A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-of-work,” Cryptology ePrint Archive, Report 2017/963, 2017, accessed:2017-10-03. [Online]. Available: https://eprint.iacr.org/2017/963.pdf
  32. Namecoin community, “Namecoin source code - chainparams.cpp,” https://github.com/namecoin/namecoin-core/blob/fdfb20fc263a72acc2a3c460b56b64245c1bedcb/src/chainparams.cpp#L123, accessed: 2018-09-25.
  33. ——, “Namecoin source code - auxpow.cpp,” https://github.com/namecoin/namecoincore/blob/fdfb20fc263a72acc2a3c460b56b64245c1bedcb/src/auxpow.cpp#L177-L200, accessed: 2018-09-25.
  34. I0Coin community, “I0coin source code,” https://github.com/domob1812/i0coin, accessed: 2018-09-25.
  35. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https://bitcoin.org/bitcoin.pdf, Dec 2008, accessed: 2015-07-01. [Online]. Available: https://bitcoin.org/bitcoin.pdf
  36. N. T. Courtois and L. Bahack, “On subversive miner strategies and block withholding attack in bitcoin digital currency,” arXiv preprint arXiv:1402.1718, 2014, accessed: 2016-07-04. [Online]. Available: https://arxiv.org/pdf/1402.1718.pdf
  37. J. Gobel, P. Keeler, A. E. Krzesinski, and P. G. Taylor, “Bitcoin blockchain dynamics: the ¨ selfish-mine strategy in the presence of propagation delay,” http://arxiv.org/pdf/1505.05343.pdf, 2015, accessed: 2015-03-01. [Online]. Available: http://arxiv.org/pdf/1505.05343.pdf
  38. N. Developers, “Neo4j,” 2012.
  39. Gavin Andresen, “Bitcoin improvement proposal 34 (bip34): Block v2, height in coinbase,” https://github.com/bitcoin/bips/blob/mastebip-0034.mediawiki, accessed: 2018-09-25. [Online]. Available: https://github.com/bitcoin/bips/blob/mastebip-0034.mediawiki
  40. Matt Corello, “Fast internet bitcoin relay engine,” http://bitcoinfibre.org/, accessed: 2018-09-25. [Online]. Available: http://bitcoinfibre.org/
  41. Suhas Daftuar, “sendheaders message,” https://github.com/bitcoin/bips/wiki/Comments:BIP-0130, accessed: 2018-09-25. [Online]. Available: https://github.com/bitcoin/bips/wiki/Comments:BIP-0130
  42. R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, “Block arrivals in the bitcoin blockchain,” 2018. [Online]. Available: https://arxiv.org/pdf/1801.07447.pdf
  43. GeistGeld community, “Geistgeld source code,” https://github.com/Lolcust/GeistGeld, accessed: 2018-09-25.
  44. A. P. Ozisik, G. Bissias, and B. Levine, “Estimation of miner hash rates and consensus on blockchains,” arXiv preprint arXiv:1707.00082, 2017, accessed:2017-09-25. [Online]. Available: https://arxiv.org/pdf/1707.00082.pdf
  45. E. Duffield and D. Diaz, “Dash: A payments-focused cryptocurrency,” https://github.com/dashpay/dash/wiki/Whitepaper, Aug 2013, accessed: 2018-09-25. [Online]. Available: https://github.com/dashpay/dash/wiki/Whitepaper
  46. N. Van Saberhagen, “Cryptonote v 2.0,” https://cryptonote.org/whitepaper.pdf, Oct 2013. [Online]. Available: https://cryptonote.org/whitepaper.pdf
  47. G. Hall, “Guide: Merge mining 6 scrypt coins at full hashpower, simultaneously,” https://www.ccn.com/guide-simultaneously-mining-5-scrypt-coins-full-hashpowe, Apr 2014, accessed: 2018-09-25. [Online]. Available: https://www.ccn.com/guide-simultaneouslymining-5-scrypt-coins-full-hashpowe
  48. united-scrypt coin, “[ann][usc] first merged minable scryptcoin unitedscryptcoin,” https://bitcointalk.org/index.php?topic=353688.0, Nov 2013, accessed: 2018-09-25. [Online]. Available: https://bitcointalk.org/index.php?topic=353688.0
  49. J. A. D. Donet, C. Perez-Sola, and J. Herrera-Joancomart ´ ´ı, “The bitcoin p2p network,” in Financial Cryptography and Data Security. Springer, 2014, pp. 87–102. [Online]. Available: http://fc14.ifca.ai/bitcoin/papers/bitcoin14 submission 3.pdf
  50. M. Bartoletti and L. Pompianu, “An analysis of bitcoin op return metadata,” https://arxiv.org/pdf/1702.01024.pdf, 2017, accessed: 2017-03-09. [Online]. Available: https://arxiv.org/pdf/1702.01024.pdf
  51. R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Mullmann, O. Hohlfeld, and K. Wehrle, ¨ “A quantitative analysis of the impact of arbitrary blockchain content on bitcoin,” in Proceedings of the 22nd International Conference on Financial Cryptography and Data Security (FC). Springer, 2018. [Online]. Available: http://fc18.ifca.ai/preproceedings/6.pdf
  52. M. Grundmann, T. Neudecker, and H. Hartenstein, “Exploiting transaction accumulation and double spends for topology inference in bitcoin,” in 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018. [Online]. Available: http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final10.pdf
  53. A. Judmayer, N. Stifter, P. Schindler, and E. Weippl, “Pitchforks in cryptocurrencies: Enforcing rule changes through offensive forking- and consensus techniques (short paper),” in CBT’18: Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, Sep 2018. [Online]. Available: https://www.sba-research.org/wpcontent/uploads/2018/09/judmayer2018pitchfork 2018-09-05.pdf
submitted by dj-gutz to myrXiv [link] [comments]

Flux: Revisiting Near Blocks for Proof-of-Work Blockchains

Cryptology ePrint Archive: Report 2018/415
Date: 2018-05-29
Author(s): Alexei Zamyatin∗, Nicholas Stifter, Philipp Schindler, Edgar Weippl, William J. Knottenbelt∗

Link to Paper


Abstract
The term near or weak blocks describes Bitcoin blocks whose PoW does not meet the required target difficulty to be considered valid under the regular consensus rules of the protocol. Near blocks are generally associated with protocol improvement proposals striving towards shorter transaction confirmation times. Existing proposals assume miners will act rationally based solely on intrinsic incentives arising from the adoption of these changes, such as earlier detection of blockchain forks.
In this paper we present Flux, a protocol extension for proof-of-work blockchains that leverages on near blocks, a new block reward distribution mechanism, and an improved branch selection policy to incentivize honest participation of miners. Our protocol reduces mining variance, improves the responsiveness of the underlying blockchain in terms of transaction processing, and can be deployed without conflicting modifications to the underlying base protocol as a velvet fork. We perform an initial analysis of selfish mining which suggests Flux not only provides security guarantees similar to pure Nakamoto consensus, but potentially renders selfish mining strategies less profitable.

References
[1] Bitcoin Cash. https://www.bitcoincash.org/. Accessed: 2017-01-24.
[2] P2pool. http://p2pool.org/. Accessed: 2017-05-10.
[3] G. Andersen. Comment in ”faster blocks vs bigger blocks”. https://bitcointalk.org/index.php?topic=673415.msg7658481#msg7658481, 2014. Accessed: 2017-05-10.
[4] G. Andersen. [bitcoin-dev] weak block thoughts... https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Septembe011157.html, 2015. Accessed: 2017-05-10.
[5] E. Androulaki, S. Capkun, and G. O. Karame. Two bitcoins at the price of one? double-spending attacks on fast payments in bitcoin. In CCS, 2012.
[6] J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Bohme. ¨ Can we afford integrity by proof-of-work? scenarios inspired by the bitcoin currency. In WEIS. Springer, 2012.
[7] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. https://eprint.iacr.org/2016/919.pdf, 2016. Accessed: 2016-11-08.
[8] Bitcoin community. OP RETURN. https://en.bitcoin.it/wiki/OP\RETURN. Accessed: 2017-05-10.
[9] Bitcoin Wiki. Merged mining specification. [https://en.bitcoin.it/wiki/Merged\](https://en.bitcoin.it/wiki/Merged)) mining\ specification. Accessed: 2017-05-10.
[10] Blockchain.info. Hashrate Distribution in Bitcoin. https://blockchain.info/de/pools. Accessed: 2017-05-10.
[11] Blockchain.info. Unconfirmed bitcoin transactions. https://blockchain.info/unconfirmed-transactions. Accessed: 2017-05-10.
[12] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies. In IEEE Symposium on Security and Privacy, 2015.
[13] V. Buterin. Ethereum: A next-generation smart contract and decentralized application platform. https://github.com/ethereum/wiki/wiki/White-Paper, 2014. Accessed: 2016-08-22.
[14] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on, pages 1–10. IEEE, 2013.
[15] J. R. Douceur. The sybil attack. In International Workshop on Peer-toPeer Systems, pages 251–260. Springer, 2002.
[16] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Renesse. Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX Security Symposium on Networked Systems Design and Implementation (NSDI’16). USENIX Association, Mar 2016.
[17] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial Cryptography and Data Security, pages 436–454. Springer, 2014.
[18] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications. In Advances in Cryptology-EUROCRYPT 2015, pages 281–310. Springer, 2015.
[19] A. E. Gencer, S. Basu, I. Eyal, R. Renesse, and E. G. Sirer. Decentralization in bitcoin and ethereum networks. In Proceedings of the 22nd International Conference on Financial Cryptography and Data Security (FC). Springer, 2018.
[20] A. Gervais, G. Karame, S. Capkun, and V. Capkun. Is bitcoin a decentralized currency? volume 12, pages 54–60, 2014.
[21] A. Gervais, G. O. Karame, K. Wust, V. Glykantzis, H. Ritzdorf, ¨ and S. Capkun. On the security and performance of proof of work blockchains. https://eprint.iacr.org/2016/555.pdf, 2016. Accessed: 2016-08-10.
[22] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Secure Information Networks, pages 258–272. Springer, 1999.
[23] A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl. Merged mining: Curse or cure? In CBT’17: Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, Sep 2017.
[24] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Capkun. ˇ Misbehavior in bitcoin: A study of double-spending and accountability. volume 18, page 2. ACM, 2015.
[25] A. Kiayias, A. Miller, and D. Zindros. Non-interactive proofs of proof-of-work. Cryptology ePrint Archive, Report 2017/963, 2017. Accessed:2017-10-03.
[26] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology Conference, pages 357–388. Springer, 2017.
[27] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain protocols. In Financial Cryptography and Data Security, pages 528–547. Springer, 2015.
[28] Litecoin community. Litecoin reference implementation. https://github.com/litecoin-project/litecoin. Accessed: 2018-05-03.
[29] G. Maxwell. Comment in ”[bitcoin-dev] weak block thoughts...”. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Septembe011198.html, 2016. Accessed: 2017-05-10.
[30] S. Micali. Algorand: The efficient and democratic ledger. http://arxiv.org/abs/1607.01341, 2016. Accessed: 2017-02-09.
[31] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, Dec 2008. Accessed: 2015-07-01.
[32] Namecoin community. Namecoin reference implementation. https://github.com/namecoin/namecoin. Accessed: 2017-05-10.
[33] Narayanan, Arvind and Bonneau, Joseph and Felten, Edward and Miller, Andrew and Goldfeder, Steven. Bitcoin and cryptocurrency technologies. https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton bitcoin book.pdf?a=1, 2016. Accessed: 2016-03-29.
[34] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish mining and combining with an eclipse attack. In 1st IEEE European Symposium on Security and Privacy, 2016. IEEE, 2016.
[35] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint. 2014.
[36] R. Pass and E. Shi. Fruitchains: A fair blockchain. http://eprint.iacr.org/2016/916.pdf, 2016. Accessed: 2016-11-08.
[37] C. Perez-Sol ´ a, S. Delgado-Segura, G. Navarro-Arribas, and J. Herrera- ` Joancomart´ı. Double-spending prevention for bitcoin zero-confirmation transactions. http://eprint.iacr.org/2017/394, 2017. Accessed: 2017-06-
[38] Pseudonymous(”TierNolan”). Decoupling transactions and pow. https://bitcointalk.org/index.php?topic=179598.0, 2013. Accessed: 2017-05-10.
[39] P. R. Rizun. Subchains: A technique to scale bitcoin and improve the user experience. Ledger, 1:38–52, 2016.
[40] K. Rosenbaum. Weak blocks - the good and the bad. http://popeller.io/ index.php/2016/01/19/weak-blocks-the-good-and-the-bad/, 2016. Accessed: 2017-05-10.
[41] K. Rosenbaum and R. Russell. Iblt and weak block propagation performance. Scaling Bitcoin Hong Kong (6 December 2015), 2015.
[42] M. Rosenfeld. Analysis of hashrate-based double spending. http://arxiv.org/abs/1402.2009, 2014. Accessed: 2016-03-09.
[43] R. Russel. Weak block simulator for bitcoin. https://github.com/rustyrussell/weak-blocks, 2014. Accessed: 2017-05-10.
[44] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin. http://arxiv.org/pdf/1507.06183.pdf, 2015. Accessed: 2016-08-22.
[45] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: Decentralized anonymous payments from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 459–474. IEEE, 2014.
[46] Satoshi Nakamoto. Comment in ”bitdns and generalizing bitcoin” bitcointalk thread. https://bitcointalk.org/index.php?topic=1790.msg28696#msg28696. Accessed: 2017-06-05.
[47] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre: A fast and scalable cryptocurrency protocol. Cryptology ePrint Archive, Report 2016/1159, 2016. Accessed: 2017-02-20.
[48] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin. In Financial Cryptography and Data Security, pages 507–527. Springer, 2015.
[49] Suhas Daftuar. Bitcoin merge commit: ”mining: Select transactions using feerate-with-ancestors”. https://github.com/bitcoin/bitcoin/pull/7600. Accessed: 2017-05-10.
[50] M. B. Taylor. Bitcoin and the age of bespoke silicon. In Proceedings of the 2013 International Conference on Compilers, Architectures and Synthesis for Embedded Systems, page 16. IEEE Press, 2013.
[51] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical survey on decentralized digital currencies. In IEEE Communications Surveys Tutorials, volume PP, pages 1–1, 2016.
[52] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated annealing: Theory and applications, pages 7–15. Springer, 1987.
[53] A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knottebelt. (Short Paper) A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice. In 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018.
[54] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. Renesse. Rem: Resourceefficient mining for blockchains. http://eprint.iacr.org/2017/179, 2017. Accessed: 2017-03-24.
submitted by dj-gutz to myrXiv [link] [comments]

Pitchforks in Cryptocurrencies: Enforcing rule changes through offensive forking- and consensus techniques

Cryptology ePrint Archive: Report 2018/836
Date: 2018-09-05
Author(s): Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, Edgar Weippl

Link to Paper


Abstract
The increasing number of cryptocurrencies, as well as the rising number of actors within each single cryptocurrency, inevitably leads to tensions between the respective communities. As with open source projects, (protocol) forks are often the result of broad disagreement. Usually, after a permanent fork both communities ``mine'' their own business and the conflict is resolved. But what if this is not the case? In this paper, we outline the possibility of malicious forking and consensus techniques that aim at destroying the other branch of a protocol fork. Thereby, we illustrate how merged mining can be used as an attack method against a permissionless PoW cryptocurrency, which itself involuntarily serves as the parent chain for an attacking merge mined branch of a hard fork.

References
  1. J. Bonneau. Why buy when you can rent? bribery attacks on bitcoin consensus. In BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and Blockchain Research, February 2016.
  2. J. Bonneau. Hostile blockchain takeovers (short paper). In 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018.
  3. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi, and E. G¨un. On scaling decentralized blockchains. In 3rd Workshop on Bitcoin and Blockchain Research, Financial Cryptography 16, 2016.
  4. I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX Security Symposium on Networked Systems Design and Implementation (NSDI’16). USENIX Association, Mar 2016.
  5. I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial Cryptography and Data Security, pages 436–454. Springer, 2014.
  6. A. Gervais, G. O. Karame, K. W¨ust, V. Glykantzis, H. Ritzdo rf, and S. Capkun. On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC, pages 3–16. ACM, 2016.
  7. A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl. Merged mining: Curse or cure? In CBT’17: Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, Sep 2017.
  8. A. Kiayias, A. Miller, and D. Zindros. Non-interactive proofs of proof-of-work. Cryptology ePrint Archive, Report 2017/963, 2017. Accessed:2017-10-03.
  9. J. A. Kroll, I. C. Davey, and E. W. Felten. The economics of bitcoin mining, or bitcoin in the presence of adversaries. In Proceedings of WEIS, volume 2013, page 11, 2013.
  10. K. Liao and J. Katz. Incentivizing blockchain forks via whale transactions. In International Conference on Financial Cryptography and Data Security, pages 264–279. Springer, 2017.
  11. P. McCorry, A. Hicks, and S. Meiklejohn. Smart contracts for bribing miners. In 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018.
  12. Narayanan, Arvind and Bonneau, Joseph and Felten, Edward and Miller, Andrew and Goldfeder, Steven. Bitcoin and cryptocurrency technologies. http://bitcoinbook.cs.princeton.edu/, 2016. Accessed: 2016-03-29.
  13. K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish mining and combining with an eclipse attack. In 1st IEEE European Symposium on Security and Privacy, 2016. IEEE, 2016.
  14. J. Teutsch, S. Jain, and P. Saxena. When cryptocurrencies mine their own business. In Financial Cryptography and Data Security (FC 2016), Feb 2016.
  15. Y. Velner, J. Teutsch, and L. Luu. Smart contracts make bitcoin mining pools vulnerable. In International Conference on Financial Cryptography and Data Security, pages 298–316. Springer, 2017.
  16. A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knottebelt. (Short Paper) A Wild Velvet Fork Appears! Inclusive Blockchain Protocol Changes in Practice. In 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer, 2018.
submitted by dj-gutz to myrXiv [link] [comments]

ECE Distinguished Lecture Series - Edward Felten - YouTube Fast Bitcoin miner How to download and start mining Best Bitcoin Mining Software of 2020 Bitcoin Generator miner 2020 best bitcoin mining software of 2019

Request PDF Power Adjusting and Bribery Racing: Novel Mining Attacks in the Bitcoin System Mining attacks allow attackers to gain an unfair share of the mining reward by deviating from the ... The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries Joshua A. Kroll, Ian C. Davey, and Edward W. Felten Princeton University Abstract The Bitcoin digital currency depends for its correctness and stability on a combination of cryptography, distributed algorithms, and incentive- driven behavior. We examine Bitcoin as a consensus game and deter-mine that it relies on ... View Essay - chapter_5 from ECON 101A at Princeton University. Bitcoin and Cryptocurrency Technologies Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder Draft Apr 10, Edward Felten; Andrew Miller; Steven Goldfeder [NBF + 16] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and Cryptocurrency Technologies. Princeton ... Bitcoin and Cryptocurrency Technologies provides a comprehensive introduction to the revolutionary yet often misunderstood new technologies of digital currency. Whether you are a student, software developer, tech entrepreneur, or researcher in computer science, this authoritative and self-contained book tells you everything you need to know about the new global money for the Internet age.

[index] [27604] [29140] [25257] [1435] [1191] [51108] [5818] [17757] [15612] [47678]

ECE Distinguished Lecture Series - Edward Felten - YouTube

The free version of the program is no longer relevant! If you want I'm ready to discuss it Mail for communication [email protected] #BTC #Bitcoin... 1.How to Earn Money from bitcoin 2.How to Earn Bitcoin 3.How to Earn bitcoin online 4.How to Earn bitcoin and btc 5.How to mine bitcoin 6.How to earn btc via... The title of Edward Felten's talk was "Toward Scalable, Sustainable Cryptocurrencies". He spoke about cryptocurrencies and the ability to transfer currency a... Joe Rogan Experience #1368 - Edward Snowden - Duration: 2:49:32. PowerfulJRE Recommended for you. 2:49:32. ... Inside a Secret Chinese Bitcoin Mine - Duration: 9:17. Motherboard Recommended for ... bitcoin go to moon, new g bitcoin, g edward griffin bitcoin, bitcoin halving, bitcoin hack 2019, bitcoinhex, bitcoin history, bitcoin hacked, bitcoin hyperwave, bitcoin heist, bitcoin hardware ...

#